【題目】是定義在上且滿足如下條件的函數(shù)組成的集合:

①對任意的,都有

②存在常數(shù),使得對任意的,都有.

1)設(shè),問是否屬于?說明你的判斷理由;

2)若,如果存在,使得,證明這樣的是唯一的;

3)設(shè)為正實數(shù),是否存在函數(shù),使?作出你的判斷,并說明理由.

【答案】1)是,詳見解析(2)詳見解析(3)詳見解析

【解析】

1)根據(jù)定義逐一驗證,即求函數(shù)在上值域,再判斷是否為子集;根據(jù)不等式尋找滿足條件的常數(shù);

2)利用反證法,假設(shè)存在兩個,根據(jù)條件得到,即假設(shè)不成立,原命題成立;

(3)先根據(jù)條件①解不等式確定,再根據(jù)條件②利用恒成立轉(zhuǎn)化為對應(yīng)函數(shù)最值,再解不等式確定.的條件由確定.

1)因為上單調(diào)遞增,所以;

所以存在常數(shù),使得對任意的,都有,

綜上屬于;

2)設(shè)存在,滿足

因為,

所以存在常數(shù),使得,

,與矛盾,

因此滿足條件的是唯一的;

(3)假設(shè)存在,則因為,且上單調(diào)遞增,所以

,因此;

存在常數(shù),使得對任意的,都有,

,所以,

因為

因此

從而

即當(dāng)時存在函數(shù),使;否則不存在.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),曲線在原點出切線相同.

(1)求的單調(diào)區(qū)間和極值;

(2)若時,,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知RtABC如圖(1),∠C90°,D.E分別是ACAB的中點,將△ADE沿DE折起到PDE位置(即A點到P點位置)如圖(2)使∠PDC60°

1)求證:BCPC;

(2)若BC2CD4,求點D到平面PBE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象關(guān)于直線對稱,則(

A.函數(shù)為奇函數(shù)

B.函數(shù)上單調(diào)遞增

C.,則的最小值為

D.函數(shù)的圖象向右平移個單位長度得到函數(shù)的圖象

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為滿足人們的閱讀需求,圖書館設(shè)立了無人值守的自助閱讀區(qū),提倡人們在閱讀后將圖書分類放回相應(yīng)區(qū)域.現(xiàn)隨機(jī)抽取了某閱讀區(qū)500本圖書的分類歸還情況,數(shù)據(jù)統(tǒng)計如下(單位:本).

文學(xué)類專欄

科普類專欄

其他類專欄

文學(xué)類圖書

100

40

10

科普類圖書

30

200

30

其他圖書

20

10

60

1)根據(jù)統(tǒng)計數(shù)據(jù)估計文學(xué)類圖書分類正確的概率;

2)根據(jù)統(tǒng)計數(shù)據(jù)估計圖書分類錯誤的概率;

3)假設(shè)文學(xué)類圖書在文學(xué)類專欄、科普類專欄其他類專欄的數(shù)目分別為,,其中,,當(dāng),,的方差最大時,求,的值,并求出此時方差的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為滿足人們的閱讀需求,圖書館設(shè)立了無人值守的自助閱讀區(qū),提倡人們在閱讀后將圖書分類放回相應(yīng)區(qū)域.現(xiàn)隨機(jī)抽取了某閱讀區(qū)500本圖書的分類歸還情況,數(shù)據(jù)統(tǒng)計如下(單位:本).

文學(xué)類專欄

科普類專欄

其他類專欄

文學(xué)類圖書

100

40

10

科普類圖書

30

200

30

其他圖書

20

10

60

1)根據(jù)統(tǒng)計數(shù)據(jù)估計文學(xué)類圖書分類正確的概率;

2)根據(jù)統(tǒng)計數(shù)據(jù)估計圖書分類錯誤的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)處的切線斜率為2.

(Ⅰ)求的單調(diào)區(qū)間和極值;

(Ⅱ)若上無解,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱錐的展開圖如圖二,其中四邊形為邊長等于的正方形,均為正三角形,在三棱錐中:

1)證明:平面平面;

2)若的中點,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】201911日新修訂的個稅法正式實施,規(guī)定:公民全月工資、薪金所得不超過5000元的部分不必納稅,超過5000元的部分為全月應(yīng)納稅所得額.此項稅款按下表分段累計計算(預(yù)扣):

全月應(yīng)繳納所得額

稅率

不超過3000元的部分

超過3000元至12000元的部分

超過12000元至25000元的部分

國家在實施新個稅時,考慮到納稅人的實際情況,實施了《個人所得稅稅前專項附加扣稅暫行辦法》,具體如下表:

項目

每月稅前抵扣金額(元)

說明

子女教育

1000

一年按12月計算,可扣12000

繼續(xù)教育

400

一年可扣除4800元,若是進(jìn)行技能職業(yè)教育或者專業(yè)技術(shù)職業(yè)資格教育一年可扣除3600

大病醫(yī)療

5000

一年最高抵扣金額為60000

住房貸款利息

1000

一年可扣除12000元,若夫妻雙方在同一城市工作,可以選擇一方來扣除

住房租金

1500/1000/800

扣除金額需要根據(jù)城市而定

贍養(yǎng)老人

2000

一年可扣除24000元,若不是獨生子女,子女平均扣除.贍養(yǎng)老人年齡需要在60周歲及以上

老李本人為獨生子女,家里有70歲的老人需要贍養(yǎng),有一個女兒正讀高三,他每月還需繳納住房貸款2734.201911月老李工資,薪金所得為20000元,按照《個人所得稅稅前專項附加扣稅暫行辦法》,則老李應(yīng)繳納稅款(預(yù)扣)為______.

查看答案和解析>>

同步練習(xí)冊答案