分析 根據(jù)向量數(shù)量積的定義,可得$\overrightarrow{a}$•$\overrightarrow$=|$\overrightarrow{AB}$||$\overrightarrow{BC}$|•cos(π-∠B)>0,進(jìn)而根據(jù)誘導(dǎo)公式和余弦的定義,得到結(jié)論.
解答 解:∵在△ABC中,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow$,
∴$\overrightarrow{a}$•$\overrightarrow$=|$\overrightarrow{AB}$||$\overrightarrow{BC}$|•cos(π-∠B)>0,
∴cos(π-∠B)>0,
∴cos∠B<0,
即B為鈍角,
故△ABC為鈍角三角形,
故答案為:鈍角三角形
點(diǎn)評 本題考查的知識點(diǎn)是三角形形狀的判斷,平面向量數(shù)量積的運(yùn)算,難度中檔.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{π}{4}$ | B. | $\frac{π}{2}$ | C. | $\frac{π}{4}$ | D. | $-\frac{π}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | A={0,1} | B. | A={0,1,3} | C. | A={0,1,2,3} | D. | A={1,3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com