1.在△ABC中,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow$,且$\overrightarrow{a}$•$\overrightarrow$>0,則△ABC為鈍角三角形(填“銳角”“直角”或“鈍角”)

分析 根據(jù)向量數(shù)量積的定義,可得$\overrightarrow{a}$•$\overrightarrow$=|$\overrightarrow{AB}$||$\overrightarrow{BC}$|•cos(π-∠B)>0,進(jìn)而根據(jù)誘導(dǎo)公式和余弦的定義,得到結(jié)論.

解答 解:∵在△ABC中,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow$,
∴$\overrightarrow{a}$•$\overrightarrow$=|$\overrightarrow{AB}$||$\overrightarrow{BC}$|•cos(π-∠B)>0,
∴cos(π-∠B)>0,
∴cos∠B<0,
即B為鈍角,
故△ABC為鈍角三角形,
故答案為:鈍角三角形

點(diǎn)評 本題考查的知識點(diǎn)是三角形形狀的判斷,平面向量數(shù)量積的運(yùn)算,難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)f(x)=sin(ωx+φ)(φ>0),(-π<ϕ<0)的一段圖象如圖所示,則ϕ=( 。
A.$-\frac{π}{4}$B.$\frac{π}{2}$C.$\frac{π}{4}$D.$-\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若全集U={0,1,2,3}且∁UA={2},則集合A為( 。
A.A={0,1}B.A={0,1,3}C.A={0,1,2,3}D.A={1,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在直角梯形ABCD中,AD∥BC,AB⊥BC,AB=AD=1,BC=2,現(xiàn)將△ABD沿BD折起后使AC=$\sqrt{3}$,在四面體ABCD四個面中兩兩構(gòu)成直二面角的個數(shù)為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,已知直三棱柱ABC-A1B1C1的各棱長都是4,E是BC的中點(diǎn),點(diǎn)F在側(cè)棱CC1上,且CF=1,求證:EF⊥A1C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知直線x+2y-3=0與圓x2+y2+x-2cy+c=0的兩個交點(diǎn)為A,B,O為坐標(biāo)原點(diǎn),且OA⊥OB,求實(shí)數(shù)c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.求y=3-4sinx-sin2x的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若橢圓x2+$\frac{{y}^{2}}{4}$=1上每個點(diǎn)的橫坐標(biāo)不變,縱坐標(biāo)縮短為原來的$\frac{1}{2}$,則所得曲線方程為x2+y2=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知直線l經(jīng)過點(diǎn)(3,-2),且在兩坐標(biāo)軸上的截距相等,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案