在△ABC中,角A、B、C所對(duì)應(yīng)的邊分別為a、b、c,且滿足=,=3.
(Ⅰ)求△ABC的面積;
(Ⅱ)若b+c=6,求a的值.
【答案】分析:(1)利用二倍角公式利用=求得cosA,進(jìn)而求得sinA,進(jìn)而根據(jù)求得bc的值,進(jìn)而根據(jù)三角形面積公式求得答案.
(2)根據(jù)bc和b+c的值求得b和c,進(jìn)而根據(jù)余弦定理求得a的值.
解答:解:(I)因?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/20131023212822901402946/SYS201310232128229014029017_DA/3.png">,∴
,
又由
得bccosA=3,∴bc=5,

(II)對(duì)于bc=5,又b+c=6,
∴b=5,c=1或b=1,c=5,
由余弦定理得a2=b2+c2-2bccosA=20,∴
點(diǎn)評(píng):本題主要考查了解三角形的問題.涉及了三角函數(shù)中的倍角公式、余弦定理和三角形面積公式等,綜合性很強(qiáng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C所對(duì)的邊分別為a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,則下列關(guān)系一定不成立的是(  )
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,且bsinA=
3
acosB

(1)求角B的大小;
(2)若a=4,c=3,D為BC的中點(diǎn),求△ABC的面積及AD的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c并且滿足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對(duì)邊的長(zhǎng)分別為a,b,c,且a=
5
,b=3,sinC=2sinA
,則sinA=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案