【題目】(2017·石家莊一模)祖暅?zhǔn)悄媳背瘯r(shí)期的偉大數(shù)學(xué)家,5世紀(jì)末提出體積計(jì)算原理,即祖暅原理:“冪勢(shì)既同,則積不容異”.意思是:夾在兩個(gè)平行平面之間的兩個(gè)幾何體,被平行于這兩個(gè)平面的任何一個(gè)平面所截,如果截面面積都相等,那么這兩個(gè)幾何體的體積一定相等.現(xiàn)有以下四個(gè)幾何體:圖①是從圓柱中挖去一個(gè)圓錐所得的幾何體,圖②、圖③、圖④分別是圓錐、圓臺(tái)和半球,則滿(mǎn)足祖暅原理的兩個(gè)幾何體為(  )

A. ①② B. ①③

C. ②④ D. ①④

【答案】D

【解析】設(shè)截面與底面的距離為,則①中截面內(nèi)圓半徑為,則截面圓環(huán)的面積為;②中截面圓的半徑為,則截面圓的面積為;③中截面圓的半徑為,則截面圓的面積為;②中截面圓的半徑為,則截面圓的面積為,所以①④中截面的面積相等,故選D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列滿(mǎn)足,數(shù)列的前項(xiàng)和為,且滿(mǎn)足.

(1)求數(shù)列的通項(xiàng)公式;

(2)數(shù)列滿(mǎn)足,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)的導(dǎo)函數(shù)f′(x),且對(duì)任意x>0,都有f′(x)>.

(1)判斷函數(shù)F(x)=在(0,+∞)上的單調(diào)性;

(2)設(shè)x1,x2∈(0,+∞),證明:f(x1)+f(x2)<f(x1x2);

(3)請(qǐng)將(2)中結(jié)論推廣到一般形式,并證明你所推廣的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ax2axxln x,且f(x)≥0.

(1)a;

(2)證明:f(x)存在唯一的極大值點(diǎn)x0,且e2<f(x0)<22

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)是由個(gè)實(shí)數(shù)組成的列的數(shù)表,滿(mǎn)足:每個(gè)數(shù)的絕對(duì)值不大于,且所有數(shù)的和為零,記為所有這樣的數(shù)表組成的集合,對(duì)于,記的第行各數(shù)之和( ),的第列各數(shù)之和(),記, , , , , 中的最小值.

)對(duì)如下數(shù)表,求的值.

)設(shè)數(shù)表形如:

的最大值.

)給定正整數(shù),對(duì)于所有的,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是一幾何體的平面展開(kāi)圖,其中ABCD為正方形,E,F分別為PA,PD的中點(diǎn),

在此幾何體中,給出下面四個(gè)結(jié)論:

直線BE與直線CF異面; 直線BE與直線AF異面;

直線EF平面PBC; 平面BCE平面PAD.

其中正確的有(  )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2017·鄭州第二次質(zhì)量預(yù)測(cè))如圖,高為1的等腰梯形ABCD中,AMCDAB=1.現(xiàn)將△AMD沿MD折起,使平面AMD⊥平面MBCD,連接ABAC.

(1)在AB邊上是否存在點(diǎn)P,使AD∥平面MPC?

(2)當(dāng)點(diǎn)PAB邊的中點(diǎn)時(shí),求點(diǎn)B到平面MPC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐PABCD中,底面ABCD是菱形,∠ABC60°,為正三角形,且側(cè)面PAB底面ABCD. E,M分別為線段AB,PD的中點(diǎn).

(I)求證:PE⊥平面ABCD;

II求證:PB//平面ACM;

(III)在棱CD上是否存在點(diǎn)G,使平面GAM⊥平面ABCD,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-5:不等式選講

設(shè)函數(shù)f(x)=e2xaln x.

(1)討論f(x)的導(dǎo)函數(shù)f′(x)零點(diǎn)的個(gè)數(shù);

(2)證明:當(dāng)a>0時(shí),f(x)≥2aaln.

查看答案和解析>>

同步練習(xí)冊(cè)答案