【題目】(2017·石家莊一模)祖暅?zhǔn)悄媳背瘯r(shí)期的偉大數(shù)學(xué)家,5世紀(jì)末提出體積計(jì)算原理,即祖暅原理:“冪勢(shì)既同,則積不容異”.意思是:夾在兩個(gè)平行平面之間的兩個(gè)幾何體,被平行于這兩個(gè)平面的任何一個(gè)平面所截,如果截面面積都相等,那么這兩個(gè)幾何體的體積一定相等.現(xiàn)有以下四個(gè)幾何體:圖①是從圓柱中挖去一個(gè)圓錐所得的幾何體,圖②、圖③、圖④分別是圓錐、圓臺(tái)和半球,則滿(mǎn)足祖暅原理的兩個(gè)幾何體為( )
A. ①② B. ①③
C. ②④ D. ①④
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列滿(mǎn)足,數(shù)列的前項(xiàng)和為,且滿(mǎn)足.
(1)求數(shù)列和的通項(xiàng)公式;
(2)數(shù)列滿(mǎn)足,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)的導(dǎo)函數(shù)f′(x),且對(duì)任意x>0,都有f′(x)>.
(1)判斷函數(shù)F(x)=在(0,+∞)上的單調(diào)性;
(2)設(shè)x1,x2∈(0,+∞),證明:f(x1)+f(x2)<f(x1+x2);
(3)請(qǐng)將(2)中結(jié)論推廣到一般形式,并證明你所推廣的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ax2-ax-xln x,且f(x)≥0.
(1)求a;
(2)證明:f(x)存在唯一的極大值點(diǎn)x0,且e-2<f(x0)<2-2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)是由個(gè)實(shí)數(shù)組成的行列的數(shù)表,滿(mǎn)足:每個(gè)數(shù)的絕對(duì)值不大于,且所有數(shù)的和為零,記為所有這樣的數(shù)表組成的集合,對(duì)于,記為的第行各數(shù)之和(剟 ),為的第列各數(shù)之和(剟),記為, , , , , , , 中的最小值.
()對(duì)如下數(shù)表,求的值.
()設(shè)數(shù)表形如:
求的最大值.
()給定正整數(shù),對(duì)于所有的,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是一幾何體的平面展開(kāi)圖,其中ABCD為正方形,E,F分別為PA,PD的中點(diǎn),
在此幾何體中,給出下面四個(gè)結(jié)論:
①直線BE與直線CF異面; ②直線BE與直線AF異面;
③直線EF∥平面PBC; ④平面BCE⊥平面PAD.
其中正確的有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2017·鄭州第二次質(zhì)量預(yù)測(cè))如圖,高為1的等腰梯形ABCD中,AM=CD=AB=1.現(xiàn)將△AMD沿MD折起,使平面AMD⊥平面MBCD,連接AB,AC.
(1)在AB邊上是否存在點(diǎn)P,使AD∥平面MPC?
(2)當(dāng)點(diǎn)P為AB邊的中點(diǎn)時(shí),求點(diǎn)B到平面MPC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD是菱形,∠ABC=60°,為正三角形,且側(cè)面PAB⊥底面ABCD. E,M分別為線段AB,PD的中點(diǎn).
(I)求證:PE⊥平面ABCD;
(II)求證:PB//平面ACM;
(III)在棱CD上是否存在點(diǎn)G,使平面GAM⊥平面ABCD,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-5:不等式選講
設(shè)函數(shù)f(x)=e2x-aln x.
(1)討論f(x)的導(dǎo)函數(shù)f′(x)零點(diǎn)的個(gè)數(shù);
(2)證明:當(dāng)a>0時(shí),f(x)≥2a+aln.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com