10.已知x=1是函數(shù)f(x)=mx3-3(m+1)x2+nx+1的一個(gè)極值點(diǎn),其中m,n∈R,m<0,m與n的關(guān)系表達(dá)式n=3m+6.

分析 由x=1是函數(shù)f(x)=mx3-3(m+1)x2+nx+1的一個(gè)極值點(diǎn),求導(dǎo),則f′(1)=0,求得m與n的關(guān)系表達(dá)式.

解答 解:f′(x)=3mx2-6(m+1)x+n,
因?yàn)閤=1是f(x)的一個(gè)極值點(diǎn),
所以f′(1)=0,即3m-6(m+1)+n=0,
所以n=3m+6,
故答案為:n=3m+6.

點(diǎn)評(píng) 考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間和極值問(wèn)題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.復(fù)數(shù)z=a+bi(a,b∈R,i是虛數(shù)單位)在復(fù)平面內(nèi)對(duì)應(yīng)點(diǎn)為Z,設(shè)r=|$\overline{OZ}$|,θ是以x軸的非負(fù)半軸為始邊,以O(shè)Z所在的射線為終邊的角,則z=a+bi=r(cosθ+isinθ),把r(cosθ+isinθ)叫做復(fù)數(shù)a+bi的三角形式.
(1)用數(shù)學(xué)歸納法證明:[r(cosθ+isinθ)]n=rn(cosnθ+isinnθ)(n∈N*);
(2)利用等式(1+i)100=[$\sqrt{2}$(cos$\frac{π}{4}$+isin$\frac{π}{4}$)]100,求C${\;}_{100}^{0}$-C${\;}_{100}^{2}$+C${\;}_{100}^{4}$-C${\;}_{100}^{6}$+…-C${\;}_{100}^{98}$+C${\;}_{100}^{100}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.不論m取何值,直線mx-y+2m+1=0恒過(guò)定點(diǎn)( 。
A.$(1,\frac{1}{2})$B.(-2,1)C.(2,-1)D.$(-1,-\frac{1}{2})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.若向量$\overrightarrow{AB}$=(-2,-3),$\overrightarrow{AC}$=(-4,-7),則$\overrightarrow{BC}$=(  )
A.(-2,-4)B.(2,4)C.(6,10)D.(-6,-10)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.計(jì)算:
(1)${∫}_{-4}^{3}$|x+2|dx;   
(2)${∫}_{0}^{1}$$\sqrt{4-{x}^{2}}$dx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知數(shù)列{an}滿足:a1=1,an+1=2an+1(n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足4b1-1•4b2-1•4b3-1…4bn-1=(an+1)bn,證明:{bn}是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)$f(x)=\frac{lnx+k}{e^x}$(k為常數(shù)),曲線y=f(x)在點(diǎn)(1,f(1))處的切線與x軸平行.
(1)求k的值;
(2)求y=f(x)的單調(diào)區(qū)間;
(3)設(shè)g(x)=xf′(x),證明:當(dāng)x>0時(shí),g(x)<1+e-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.在△ABC中,內(nèi)角A、B、C所對(duì)的邊分別是a、b、c,若sinC+sin(B-A)=sin2A,則△ABC的形狀為等腰或直角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.若函數(shù)f(x)的定義域?yàn)镽,f′(x)>2恒成立,f(-1)=2,則f(x)>2x+4解集為(-1,+∞).

查看答案和解析>>

同步練習(xí)冊(cè)答案