(本題滿分13分)某化工企業(yè)2012年底投入100萬元,購入一套污水處理設(shè)備.該設(shè)備每年的運轉(zhuǎn)費用是0.5萬元,此外每年都要花費一定的維護(hù)費,第一年的維護(hù)費為2萬元,由于設(shè)備老化,以后每年的維護(hù)費都比上一年增加2萬元.設(shè)該企業(yè)使用該設(shè)備年的年平均污水處理費用為(萬元)。
(1)用表示;
(2)當(dāng)該企業(yè)的年平均污水處理費用最低時,企業(yè)需重新更換新的污水處理設(shè)備.則該企業(yè)幾年后需要重新更換新的污水處理設(shè)備。

(1))(2)該企業(yè)10年后需要重新更換新設(shè)備

解析試題分析:(1),
);                                         ……7分
(2)由均值不等式得:
(萬元)
當(dāng)且僅當(dāng),即時取到等號.                               ……12分
答:該企業(yè)10年后需要重新更換新設(shè)備.                                ……13分
考點:本小題主要考查函數(shù)的實際應(yīng)用和利用基本不等式求函數(shù)的最值,考查學(xué)生將實際問題轉(zhuǎn)化成數(shù)學(xué)問題的能力和運算求解能力.
點評:解決實際應(yīng)用題,關(guān)鍵是根據(jù)題意將實際問題轉(zhuǎn)化為熟悉的數(shù)學(xué)問題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)南昌市在加大城市化進(jìn)程中,環(huán)境污染問題也日益突出。據(jù)環(huán)保局測定,某處的污染指數(shù)與附近污染源的強度成正比,與到污染源距離的平方成反比.現(xiàn)已知相距18的A,B兩家工廠(視作污染源)的污染強度分別為,它們連線上任意一點C處的污染指數(shù)等于兩家工廠對該處的污染指數(shù)之和.設(shè)).
(1) 試將表示為的函數(shù);
(2) 若,且時,取得最小值,試求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某工廠生產(chǎn)一種產(chǎn)品,已知該產(chǎn)品的月產(chǎn)量x噸與每噸產(chǎn)品的價格(元)之間的關(guān)系為,且生產(chǎn)噸的成本為(元).問該廠每月生產(chǎn)多少噸產(chǎn)品才能使利潤達(dá)到最大?最大利潤是多少?(利潤=收入-成本)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

計算
(1)
(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分10分)
已知函數(shù)f (x)=| xa | + | x + 2 |(a為常數(shù),且aR).
(Ⅰ)若函數(shù)f (x)的最小值為2,求a的值;
(Ⅱ)當(dāng)a=2時,解不等式f (x)6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分14分) 本題共有2個小題,第1小題滿分6分,第2小題滿分8分.
已知函數(shù)=.
(1)判斷函數(shù)的奇偶性,并證明;
(2)求的反函數(shù),并求使得函數(shù)有零點的實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(10分)不等式,當(dāng)時恒成立.求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

命題方程有兩個不等的正實數(shù)根,命題方程無實數(shù)根。若“”為真命題,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分16分)
已知二次函數(shù)
(1)設(shè)上的最大值、最小值分別是、,集合,且,記,求的最小值.
(2)當(dāng)時,
①設(shè),不等式的解集為C,且,求實數(shù)的取值范圍;
②設(shè) ,求的最小值.

查看答案和解析>>

同步練習(xí)冊答案