解答:
解:∵函數f(x)=ax
2+2x-3-a+
,
∴a≠0,函數f(x)的圖象是拋物線,對稱軸方程為
x=-.
(1)當a>0時,
-<0,
∴拋物線開口向上,對稱軸在區(qū)間左邊,函數f(x)在[0,1]上單調遞增.
∴f(0)≤f(x)≤f(1),即-3-a+
≤f(x)≤-1+
,
∴函數f(x)在[0,1]上的值域為[-3-a+
,-1+
];
(2)當a<0時,
->0,
∴拋物線開口向下.
①當0<
-<
,即a<-2時,
拋物線的對稱軸在區(qū)間[0,1]內偏左,
∴f(1)≤f(x)≤f(
-),即-1+
≤f(x)≤-3-a+
,
∴函數f(x)在[0,1]上的值域為[-1+
,-3-a+
];
②當
≤
-≤1,即-2≤a≤-1時,
拋物線的對稱軸在區(qū)間[0,1]內偏右,
∴f(0)≤f(x)≤f(
-),即-3-a+
≤f(x)≤-3-a+
,
∴函數f(x)在[0,1]上的值域為[-3-a+
,-3-a+
];
③當
->1,即-1<a<0時,
拋物線的對稱軸在區(qū)間[0,1]右,
∴f(0)≤f(x)≤f(1),即-3-a+
≤f(x)≤-1+
,
∴函數f(x)在[0,1]上的值域為[-3-a+
,-1+
].
綜上,①當a<-2時,函數f(x)在[0,1]上的值域為[-1+
,-3-a+
];
②當-2≤a≤-1時,函數f(x)在[0,1]上的值域為[-3-a+
,-3-a+
];
③當-1<a<0時,函數f(x)在[0,1]上的值域為[-3-a+
,-1+
];
④當a>0時,函數f(x)在[0,1]上的值域為[-3-a+
,-1+
].