已知,,點(diǎn)的坐標(biāo)為.
(1)求當(dāng)時(shí),點(diǎn)滿(mǎn)足的概率;
(2)求當(dāng)時(shí),點(diǎn)滿(mǎn)足的概率.
(1);(2).
解析試題分析:(1)這是幾何概型的概率計(jì)算問(wèn)題,先確定總區(qū)域即不等式組所表示的平面區(qū)域的面積,后確定不等式組所表示的平面區(qū)域的面積,最后根據(jù)幾何概型的概率計(jì)算公式計(jì)算即可;(2)先計(jì)算出滿(mǎn)足不等式組所包含的整點(diǎn)的個(gè)數(shù),后確定不等式組所包含的整點(diǎn)的個(gè)數(shù),最后由即可得到所求的概率.
試題解析:(1)點(diǎn)所在的區(qū)域?yàn)檎叫?img src="http://thumb.zyjl.cn/pic5/tikupic/03/d/1e6cv4.png" style="vertical-align:middle;" />的內(nèi)部(含邊界) (1分)
滿(mǎn)足的點(diǎn)的區(qū)域?yàn)橐?img src="http://thumb.zyjl.cn/pic5/tikupic/3c/e/3u6pd2.png" style="vertical-align:middle;" />為圓心,2為半徑的圓面(含邊界) (3分)
所求的概率 (5分)
(2)滿(mǎn)足,且,的整點(diǎn)有25個(gè) (8分)
滿(mǎn)足,且的整點(diǎn)有6個(gè) (11分)
所求的概率 (12分).
考點(diǎn):1.古典概率;2.幾何概型的概率.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
某市質(zhì)監(jiān)部門(mén)對(duì)市場(chǎng)上奶粉進(jìn)行質(zhì)量抽檢,現(xiàn)將9個(gè)進(jìn)口品牌奶粉的樣品編號(hào)為1,2,3,4, ,9;6個(gè)國(guó)產(chǎn)品牌奶粉的樣品編號(hào)為10,11,12,15,按進(jìn)口品牌及國(guó)產(chǎn)品牌分層進(jìn)行分層抽樣,從其中抽取5個(gè)樣品進(jìn)行首輪檢驗(yàn),用表示編號(hào)為的樣品首輪同時(shí)被抽到的概率.
(1)求的值;
(2)求所有的的和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
受轎車(chē)在保修期內(nèi)維修費(fèi)等因素的影響,企業(yè)生產(chǎn)每輛轎車(chē)的利潤(rùn)與該轎車(chē)首次出現(xiàn)故障的時(shí)間有關(guān).某轎車(chē)制造廠(chǎng)生產(chǎn)甲、乙兩種品牌轎車(chē),保修期均為2年.現(xiàn)從該廠(chǎng)已售出的兩種品牌轎車(chē)中各隨機(jī)抽取50輛,統(tǒng)計(jì)數(shù)據(jù)如下:
品牌 | 甲 | 乙 | |||
首次出現(xiàn)故 障時(shí)間x(年) | 0<x≤1 | 1<x≤2 | x>2 | 0<x≤2 | x>2 |
轎車(chē)數(shù)量(輛) | 2 | 3 | 45 | 5 | 45 |
每輛利潤(rùn) (萬(wàn)元) | 1 | 2 | 3 | 1.8 | 2.9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知二次函數(shù)(),若是從區(qū)間中隨機(jī)抽取的一個(gè)數(shù),是從區(qū)間中隨機(jī)抽取的一個(gè)數(shù),求方程沒(méi)有實(shí)數(shù)根的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
盒子中裝有四張大小形狀均相同的卡片,卡片上分別標(biāo)有數(shù)其中是虛數(shù)單位.稱(chēng)“從盒中隨機(jī)抽取一張,記下卡片上的數(shù)后并放回”為一次試驗(yàn)(設(shè)每次試驗(yàn)的結(jié)果互不影響).
(1)求事件 “在一次試驗(yàn)中,得到的數(shù)為虛數(shù)”的概率與事件 “在四次試驗(yàn)中,
至少有兩次得到虛數(shù)” 的概率;
(2)在兩次試驗(yàn)中,記兩次得到的數(shù)分別為,求隨機(jī)變量的分布列與數(shù)學(xué)期望
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
某商家推出一款簡(jiǎn)單電子游戲,彈射一次可以將三個(gè)相同的小球隨機(jī)彈到一個(gè)正六邊形的頂點(diǎn)與中心共七個(gè)點(diǎn)中的三個(gè)位置上(如圖),用S表示這三個(gè)球?yàn)轫旤c(diǎn)的三角形的面積.規(guī)定:當(dāng)三球共線(xiàn)時(shí),S=0;當(dāng)S最大時(shí),中一等獎(jiǎng),當(dāng)S最小時(shí),中二等獎(jiǎng),其余情況不中獎(jiǎng),一次游戲只能彈射一次.
(1)求甲一次游戲中能中獎(jiǎng)的概率;
(2)設(shè)這個(gè)正六邊形的面積是6,求一次游戲中隨機(jī)變量S的分布列及期望值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
據(jù)民生所望,相關(guān)部門(mén)對(duì)所屬單位進(jìn)行整治性核查,標(biāo)準(zhǔn)如下表:
規(guī)定初查累計(jì)權(quán)重分?jǐn)?shù)為10分或9分的不需要復(fù)查并給予獎(jiǎng)勵(lì),10分的獎(jiǎng)勵(lì)18萬(wàn)元;9分的獎(jiǎng)勵(lì)8萬(wàn)元;初查累計(jì)權(quán)重分?jǐn)?shù)為7分及其以下的停下運(yùn)營(yíng)并罰款1萬(wàn)元;初查累計(jì)權(quán)重分?jǐn)?shù)為8分的要對(duì)不合格指標(biāo)進(jìn)行復(fù)查,最終累計(jì)權(quán)重得分等于初查合格部分與復(fù)查部分得分的和,最終累計(jì)權(quán)重分?jǐn)?shù)為10分方可繼續(xù)運(yùn)營(yíng),否則停業(yè)運(yùn)營(yíng)并罰款1萬(wàn)元.
(1)求一家單位既沒(méi)獲獎(jiǎng)勵(lì)又沒(méi)被罰款的概率;
(2)求一家單位在這次整治性核查中所獲金額X(萬(wàn)元)的分布列和數(shù)學(xué)期望(獎(jiǎng)勵(lì)為正數(shù),罰款為負(fù)數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
淮南八公山某種豆腐食品是經(jīng)過(guò)A、B、C三道工序加工而成的,A、B、C工序的產(chǎn)品合格率分別為、、.已知每道工序的加工都相互獨(dú)立,三道工序加工的產(chǎn)品都為合格時(shí)產(chǎn)品為一等品;有兩次合格為二等品;其它的為廢品,不進(jìn)入市場(chǎng).
(Ⅰ)正式生產(chǎn)前先試生產(chǎn)2袋食品,求這2袋食品都為廢品的概率;
(Ⅱ)設(shè)ξ為加工工序中產(chǎn)品合格的次數(shù),求ξ的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
某活動(dòng)將在遼寧沈陽(yáng)舉行,組委會(huì)在沈陽(yáng)某大學(xué)招募了12名男志愿者和18名女志愿者,將這30名志愿者的身高編成如圖所示的莖葉圖(單位:cm),身高在175 cm以上(包括175 cm)定義為“高個(gè)子”,身高在175 cm以下(不包括175 cm)定義為“非高個(gè)子”.
(1)如果用分層抽樣的方法從“高個(gè)子”和“非高個(gè)子”中共抽取5人,再?gòu)倪@5人中選2人,求至少有一人是“高個(gè)子”的概率;
(2)若從身高180 cm以上(包括180 cm)的志愿者中選出男、女各一人,求這2人身高相差5 cm以上的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com