【題目】已知關(guān)于x的不等式ax2﹣3x+2>0的解集為{x|x<1或x>b}
(1)求實(shí)數(shù)a、b的值;
(2)解關(guān)于x的不等式 >0(c為常數(shù))
【答案】
(1)解:由題意可得,1和b是ax2﹣3x+2=0的兩個(gè)實(shí)數(shù)根,由韋達(dá)定理可得 1+b= ,且1×b= ,
解得 a=1,b=2
(2)解:關(guān)于x的不等式 >0 等價(jià)于 (x﹣c)(x﹣2)>0,當(dāng)c=2時(shí),不等式的解集為{x|x≠2};
當(dāng)c>2時(shí),不等式的解集為{x|x>c,或 x<2};當(dāng)c<2時(shí),不等式的解集為{x|x<c,或 x>2}
【解析】(1)由題意可得,1和b是ax2﹣3x+2=0的兩個(gè)實(shí)數(shù)根,由韋達(dá)定理求得a和b的值.(2)關(guān)于x的不等式 >0 等價(jià)于 (x﹣c)(x﹣2)>0,分當(dāng)c=2時(shí)、當(dāng)c>2時(shí)、當(dāng)c<2時(shí)三種情況,分別求得不等式的解集.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解解一元二次不等式(求一元二次不等式解集的步驟:一化:化二次項(xiàng)前的系數(shù)為正數(shù);二判:判斷對(duì)應(yīng)方程的根;三求:求對(duì)應(yīng)方程的根;四畫:畫出對(duì)應(yīng)函數(shù)的圖象;五解集:根據(jù)圖象寫出不等式的解集;規(guī)律:當(dāng)二次項(xiàng)系數(shù)為正時(shí),小于取中間,大于取兩邊).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 =1(a>b>0)的離心率為 ,右焦點(diǎn)與拋物線y2=4x的焦點(diǎn)F重合.
(1)求橢圓的方程;
(2)過(guò)F的直線l交橢圓于A、B兩點(diǎn),橢圓的左焦點(diǎn)力F',求△AF'B的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(),其中為自然對(duì)數(shù)的底數(shù).
(1)討論函數(shù)的單調(diào)性及極值;
(2)若不等式在內(nèi)恒成立,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x﹣alnx,(a∈R).
(1)討論函數(shù)f(x)在定義域內(nèi)的極值點(diǎn)的個(gè)數(shù);
(2)設(shè)g(x)=﹣ ,若不等式f(x)>g(x)對(duì)任意x∈[1,e]恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列函數(shù):
①y=x+ ;
②y=lgx+logx10(x>0,x≠1);
③y=sinx+ (0<x≤ );
④y= ;
⑤y= (x+ )(x>2).
其中最小值為2的函數(shù)序號(hào)是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)= ,其中a∈R.
(1)若a=1,f(x)的定義域?yàn)閰^(qū)間[0,3],求f(x)的最大值和最小值;
(2)若f(x)的定義域?yàn)閰^(qū)間(0,+∞),求a的取值范圍,使f(x)在定義域內(nèi)是單調(diào)減函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)是奇函數(shù).
(1)求實(shí)數(shù)的值;
(2)用定義證明函數(shù)在上的單調(diào)性;
(3)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中.
(1)設(shè)是的導(dǎo)函數(shù),求函數(shù)的極值;
(2)是否存在常數(shù),使得時(shí), 恒成立,且有唯一解,若存在,求出的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)f(x)=ax+ka﹣x(a>0且a≠1)在R上既是奇函數(shù)又是增函數(shù),則函數(shù)g(x)=loga(x+k)的圖象是( )
A.
B.
C.
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com