【題目】設(shè)D是圓Ox2+y216上的任意一點,m是過點D且與x軸垂直的直線,E是直線mx軸的交點,點Q在直線m上,且滿足2|EQ||ED|.當(dāng)點D在圓O上運動時,記點Q的軌跡為曲線C

1)求曲線C的方程.

2)已知點P23),過F2,0)的直線l交曲線CAB兩點,交直線x8于點M.判定直線PAPM,PB的斜率是否依次構(gòu)成等差數(shù)列?并說明理由.

【答案】11,(2)成等差數(shù)列

【解析】

1)由題意設(shè)Qxy),Dx0,y0),根據(jù)2|EQ||ED|Q在直線m上,則橢圓的方程即可得到;

2)設(shè)出直線l的方程,和橢圓方程聯(lián)立,利用根與系數(shù)的關(guān)系得到k1+k3,并求得k2的值,由k1+k3=2k2說明直線PA,PMPB的斜率成等差數(shù)列.

解:(1)設(shè)Qx,y),Dx0,y0),∵2|EQ||ED|,Q在直線m上,

x0x,|y0||y|.①

∵點D在圓x2+y216上運動,

x02+y0216

將①式代入②式即得曲線C的方程為x2y216,即1,

2)直線PA,PM,PB的斜率成等差數(shù)列,證明如下:

由(1)知橢圓C3x2+4y248,

直線l的方程為ykx2),

代入橢圓方程并整理,得(3+4k2x216k2x+16k2480

設(shè)Ax1y1),Bx2y2),直線PAPM,PB的斜率分別為k1,k2,k3,

則有x1+x2,x1x2,

可知M的坐標為(86k).

k1+k3

2k32k32k1,

2k222k1

k1+k32k2

故直線PA,PM,PB的斜率成等差數(shù)列.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

1)若,,求實數(shù)的值.

2)若,,求正實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱中,,的中點.

1)證明:平面平面;

2)求平面與平面所成的二面角大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是我國古代的數(shù)學(xué)名著,書中有如下問題:“今有五人分五錢,令上兩人所得與下三人等。問各得幾何?”其意思是:“已知甲、乙、丙、丁、戊五人分五錢,甲、乙兩人所得之和與丙、丁、戊三人所得之和相等,且甲、乙、丙、丁、戊所得依次成等差數(shù)列。問五人各得多少錢?”(“錢”是古代的一種重量單位)。這個問題中,戊所得為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在空間幾何體中,平面平面,都是邊長為2的等邊三角形,,點在平面上的射影在的平分線上,已知和平面所成角為.

(1)求證:平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,已知橢圓的離心率相等.橢圓的右焦點為F,過點F的直線與橢圓交于A,B兩點,射線與橢圓交于點C,橢圓的右頂點為D

1)求橢圓的標準方程;

2)若的面積為,求直線的方程;

3)若,求證:四邊形是平行四邊形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的兩焦點與短軸的一個端點的連線構(gòu)成面積為的等腰直角三角形.

1)求橢圓的標準方程;

2)直線與橢圓相交于兩點,試問:在軸上是否存在點,使得為等邊三角形,若存在,求直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面四邊形中,E,F中點,,,將沿對角線折起至,使平面平面,則四面體中,下列結(jié)論不正確的是(

A.平面B.異面直線所成的角為90°

C.異面直線所成的角為60°D.直線與平面所成的角為30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形的邊長為4,點 分別為, 的中點,將, ,分別沿, 折起,使, 兩點重合于點,連接.

(1)求證: 平面

(2)求與平面所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案