14.有關(guān)命題的敘述,錯(cuò)誤的個(gè)數(shù)為(  )
①命題“若p∨q為真命題,則p∧q為真命題”.
②“x=-1”是“x2-5x-6=0”的必要不充分條件.
③命題“?x∈R,使得x2+x+1<0”的否定是:“?x∈R,均有x2+x+1<0”.
④命題“sinx=siny,x=y”的逆否命題為真命題.
A.1B.2C.3D.4

分析 ①利用復(fù)合命題的真值表;②利用條件的判斷方法;③利用含有一個(gè)量詞的命題否定的規(guī)則;④利用四種命題的等價(jià)性

解答 ①錯(cuò)誤:若要p∨q為真命題,只要p,q有一個(gè)為真命題即可,有三種情況,而要p∧q為真命題,必須p,q都是真命題,顯然條件只有一種情況滿足
②錯(cuò)誤:“x=-1”是“x2-5x-6=0”的充分不必要條件
③錯(cuò)誤:命題“?x∈R,使得x2+x+1<0”的否定是:“?x∈R,均有x2+x+1≥0”.
④錯(cuò)誤:原命題是假命題,原命題和逆否命題是等價(jià)的,所以逆否命題也是假命題
錯(cuò)誤的命題個(gè)數(shù)是4,
故選D

點(diǎn)評 ①p∨q有真即真,p∧q有假即假;②“x=-1,或x=6”是“x2-5x-6=0”的充要條件;③含有一個(gè)量詞的命題的否定,除了改變量詞還要否定結(jié)論;④利用四種命題的等價(jià)性,原命題和逆否命題是等價(jià)的

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列函數(shù)中,在其定義域內(nèi)既是奇函數(shù),又是減函數(shù)的是( 。
A.$f(x)=\frac{1}{x}$B.$f(x)=\sqrt{-x}$C.f(x)=2-x-2xD.$f(x)={log_{\frac{1}{2}}}|x|$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)y=$\sqrt{2x+3}$+$\frac{1}{x}$的定義域是( 。
A.{x|x≥-$\frac{3}{2}$}B.{x|x≥-$\frac{3}{2}$且x≠0}C.{x|x≤$\frac{3}{2}$}D.{x|x≤$\frac{3}{2}$且x≠0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知向量$\overrightarrow{OA},\overrightarrow{OB}$滿足$\overrightarrow{|{OA}|}=\overrightarrow{|{OB}|}=1,\overrightarrow{OA}⊥\overrightarrow{OB},\overrightarrow{OC}=λ\overrightarrow{OA}+μ\overrightarrow{OB}({λ,μ∈R})$,若M為AB的中點(diǎn),并且$|{\overrightarrow{MC}}|=1$,則λ+μ的最大值是(  )
A.$1-\sqrt{3}$B.$1+\sqrt{2}$C.$\sqrt{5}$D.$1+\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)y=f(x)的定義域?yàn)镽,當(dāng)x<0時(shí),f(x)>1,且對任意的實(shí)數(shù)x,y∈R,等式f(x)•f(y)=f(x+y)成立,若數(shù)列{an}滿足f(an+1)=$\frac{1}{f(\frac{1}{1+{a}_{n}})}$,(n∈N+)且a1=f(0),則下列結(jié)論成立的是( 。
A.f(a2013)>f(a2016B.f(a2014)>f(a2015C.f(a2016)<f(a2015D.f(a2014)<f(a2016

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=ln(ex+a)(a為常數(shù),e為自然對數(shù)的底數(shù))是實(shí)數(shù)集R上的奇函數(shù),函數(shù)g(x)=λf(x)+sinx在區(qū)間[-1,1]上是減函數(shù).
(1)求實(shí)數(shù)a的值;
(2)若g(x)≤t2+λt+1在x∈[-1,1]上恒成立,求實(shí)數(shù)t的取值范圍;
(3)討論關(guān)于x的方程$\frac{lnx}{f(x)}={x^2}-2ex+m$的根的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.若0≤a≤1,解關(guān)于x的不等式(x-a)(x+a-1)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)的定義域?yàn)镽+,且對一切正實(shí)數(shù)x,y都有f(x+y)=f(x)+f(y)成立,若f(4)=2,求f(2)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在△ABC中,角A,B,C所對的邊分別為a,b,c,已知S△ABC=$\frac{\sqrt{3}}{12}$a2,b=2,則c+$\frac{4}{c}$的最大值為( 。
A.5$\sqrt{2}$B.8C.6$\sqrt{3}$D.12

查看答案和解析>>

同步練習(xí)冊答案