已知圓 關(guān)于直線:對(duì)稱的圓為

求圓 的方程

在圓和圓 上各取點(diǎn)求線段長的最小值.(12分)

 

【答案】

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1、F2分別為橢圓C:
x2
a2
+
y2
b2
=1
的左、右兩個(gè)焦點(diǎn).
(1)若橢圓C上的點(diǎn)A(1,
3
2
)到F1、F2兩點(diǎn)的距離之和等于4,寫出橢圓C的方程和焦點(diǎn)坐標(biāo).
(2)已知圓心在原點(diǎn)的圓具有性質(zhì):若M、N是圓上關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn),點(diǎn)P是圓上的任意一點(diǎn),當(dāng)直線PM、PN的斜率都存在,并記作KPM、KPN那么KPMKPN=-1.試對(duì)橢圓
x2
a2
+
y2
b2
=1
寫出類似的性質(zhì),并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xoy中,已知直線l:8x+6y+1=0,圓C1:x2+y2+8x-2y+13=0,圓C2:x2+y2+8tx-8y+16t+12=0.
(1)當(dāng)t=-1時(shí),試判斷圓C1與圓C2的位置關(guān)系,并說明理由;
(2)若圓C1與圓C2關(guān)于直線l對(duì)稱,求t的值;
(3)在(2)的條件下,若P(a,b)為平面上的點(diǎn),是否存在過點(diǎn)P的無窮多對(duì)互相垂直的直線l1和l2,它們分別與圓C1與圓C2相交,且直線l1被圓C1截得的弦長與直線l2被圓C2截得的弦長相等,若存在,求點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l過點(diǎn)(1,
178
)且它的一個(gè)方向向量為(4,-7),又圓C1:(x+3)2+(y-1)2=4與圓C2關(guān)于直線l對(duì)稱.
(Ⅰ)求直線l和圓C2的方程;
(Ⅱ)設(shè)P為平面上的點(diǎn),滿足:存在過點(diǎn)P的無窮多對(duì)互相垂直的直線l1和l2,它們分別與圓C1和圓C2相交,且直線l1被圓C1截得的弦長與直線l2被圓C2截得的弦長相等,試示所有滿足條件的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•漳州模擬)本題(1)、(2)、(3)三個(gè)選答題,每小題7分,請(qǐng)考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計(jì)分.作答時(shí),先用2B鉛筆在答題卡上把所選題目對(duì)應(yīng)的題號(hào)涂黑,并將所選題號(hào)填入括號(hào)中.
(1)選修4-2:矩陣與變換
已知矩陣A=
a2
1b
有一個(gè)屬于特征值1的特征向量
α
=
2
-1

(Ⅰ) 求矩陣A;
(Ⅱ) 矩陣B=
1-1
01
,點(diǎn)O(0,0),M(2,-1),N(0,2),求△OMN在矩陣AB的對(duì)應(yīng)變換作用下所得到的△O'M'N'的面積.
(2)選修4-4:坐標(biāo)系與參數(shù)方程
已知直角坐標(biāo)系xOy中,直線l的參數(shù)方程為
x=t-3 
y=
3
(t為參數(shù)).以直角坐標(biāo)系xOy中的原點(diǎn)O為 極點(diǎn),x軸的非負(fù)半軸為極軸,圓C的極坐標(biāo)方程為ρ2-4ρcosθ+3=0,
(Ⅰ) 求l的普通方程及C的直角坐標(biāo)方程;
(Ⅱ) P為圓C上的點(diǎn),求P到l距離的取值范圍.
(3)選修4-5:不等式選講
已知關(guān)于x的不等式:|x-1|+|x+2|≥a2+2|a|-5對(duì)任意x∈R恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年福建省高二下學(xué)期教學(xué)質(zhì)量檢測(cè)2(理科)數(shù)學(xué)卷 題型:解答題

(1) 以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸。已知點(diǎn)的直角坐標(biāo)為(1,-5),點(diǎn)的極坐標(biāo)為若直線過點(diǎn),且傾斜角為,圓為圓心、為半徑。(I)求直線的參數(shù)方程和圓的極坐標(biāo)方程;(II)試判定直線和圓的位置關(guān)系.

(2)把曲線先進(jìn)行橫坐標(biāo)縮為原來的一半,縱坐標(biāo)保持不變的伸縮變換,再做關(guān)于軸的反射變換變?yōu)榍,求曲線的方程.

(3)關(guān)于的一元二次方程對(duì)任意無實(shí)根,求實(shí)數(shù)的取值范圍.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案