【題目】函數(shù)f(x)=3sin(2x﹣ )的圖象為C,下列結論中正確的是( )
A.圖象C關于直線x= 對稱
B.圖象C關于點(﹣ ,0)對稱
C.函數(shù)f(x)在區(qū)間(﹣ , )內是增函數(shù)
D.由y=3sin2x的圖象向右平移 個單位長度可以得到圖象C
【答案】C
【解析】解:選項A錯誤,由于f( )=0≠±3,故A錯.
選項B錯誤,由于正弦類函數(shù)圖象的對稱點是圖象的平衡點,
因為f(﹣ )=3sin(﹣2× ﹣ )=﹣ ,所以(﹣ ,0)不在函數(shù)圖象上.
此函數(shù)圖象不關于這點對稱,故B錯誤.
選項C正確,令u=2x﹣ ,當﹣ <x< 時,﹣ <u< ,由于y=3sinu在(﹣ , )上是增函數(shù),所以選項C正確.
選項D錯誤,由于y=3sin2x的圖象向右平移 個單位得y=3sin2(x﹣ )即y=3sin(2x﹣ )的圖象而不是圖象C.
故選C.
【考點精析】利用正弦函數(shù)的單調性和正弦函數(shù)的對稱性對題目進行判斷即可得到答案,需要熟知正弦函數(shù)的單調性:在上是增函數(shù);在上是減函數(shù);正弦函數(shù)的對稱性:對稱中心;對稱軸.
科目:高中數(shù)學 來源: 題型:
【題目】如圖:已知四棱錐P﹣ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中點,求證:
(1)PC∥平面EBD.
(2)平面PBC⊥平面PCD.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題共14分)
如圖,在四棱錐中, 平面,底面是菱形, .
(Ⅰ)求證: 平面
(Ⅱ)若求與所成角的余弦值;
(Ⅲ)當平面與平面垂直時,求的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓: ()過點,且離心率為,過點的直線與橢圓交于, 兩點.
(Ⅰ)求橢圓的的標準方程;
(Ⅱ)已知為坐標原點,且,求面積的最大值以及此時直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在長方體中,,是棱上的一點.
(1)求證:平面;
(2)求證:;
(3)若是棱的中點,在棱上是否存在點,使得平面?若存在,求出線段的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,直線的參數(shù)方程為,其中為參數(shù), ,再以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為,其中, ,直線與曲線交于兩點.
(1)求的值;
(2)已知點,且,求直線的普通方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的對稱軸為坐標軸,離心率為,且一個焦點坐標為.
(1)求橢圓的方程;
(2)設直線與橢圓相交于兩點,以線段為鄰邊作平行四邊形,其中點在橢圓上, 為坐標原點,求點到直線的距離的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com