已知曲線C上動點P(x,y)到定點F1(,0)與定直線l1∶x=的距離之比為常數(shù).
(1) 求曲線C的軌跡方程;
(2) 以曲線C的左頂點T為圓心作圓T:(x+2)2+y2=r2(r>0),設(shè)圓T與曲線C交于點M與點N,求·的最小值,并求此時圓T的方程.
科目:高中數(shù)學 來源: 題型:
已知雙曲線-=1的離心率為2,焦點到漸近線的距離等于,過右焦點F2的直線l交雙曲線于A、B兩點,F(xiàn)1為左焦點.
(1) 求雙曲線的方程;
(2) 若△F1AB的面積等于6,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
如圖,橢圓C0:=1(a>b>0,a、b為常數(shù)),動圓C1:x2+y2=t,b<t1<a.點A1、A2分別為C0的左、右頂點,C1與C0相交于A、B、C、D四點.
(1) 求直線AA1與直線A2B交點M的軌跡方程;
(2) 設(shè)動圓C2:x2+y2=t與C0相交于A′,B′,C′,D′四點,其中b<t2<a,t1≠t2.若矩形ABCD與矩形A′B′C′D′的面積相等,證明:t+t為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
如圖,已知△OFQ的面積為S,且·=1.設(shè)||=c(c≥2),S=c.若以O(shè)為中心,F(xiàn)為一個焦點的橢圓經(jīng)過點Q,當取最小值時,求橢圓的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com