19.若函數(shù)f(x+1)的定義域是[-2,2],則函數(shù)f(2x-1)+f(2x+1)的定義域是[0,1].

分析 根據(jù)復合函數(shù)定義域之間的關(guān)系進行求解即可

解答 解:∵函數(shù)f(x+1)的定義域為[-2,2],
∴-2≤x≤2,
則-1≤x+1≤3,
即函數(shù)f(x)的定義域為[-1,3],
由$\left\{\begin{array}{l}-1≤2x-1≤3\\-1≤2x+1≤3\end{array}\right.$,
解得0≤x≤1,
故答案為:[0,1].

點評 本題主要考查函數(shù)的定義域的求解,要求熟練掌握復合函數(shù)定義域之間的關(guān)系.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

9.已知圓C1:x2+y2-4x-4y-1=0,圓C2:x2+y2+2x+8y-8=0,圓C1與圓C2的位置關(guān)系為( 。
A.外切B.相離C.相交D.內(nèi)切

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知α,β是方程2x2+2ax+b=0的兩根,且α∈[0,1],β∈[1,2],a,b∈R,則$\frac{{5{a^2}+4ab+{b^2}}}{{2{a^2}+ab}}$的范圍[2,$\frac{5}{2}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.集合A={3,|a|},B={a,1},若A∩B={2},則A∪B=( 。
A.{0,1,3}B.{1,2,3}C.{0,1,2,3}D.{1,2,3,-2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.關(guān)于x的方程${({\frac{2}{3}})^x}=\frac{1+a}{1-a}$有負實數(shù)根,則a的取值范圍是(  )
A.(-1,1)B.(0,1)C.(-1,0)D.$({-\frac{2}{3},\frac{2}{3}})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.函數(shù)f(x)對于任意的a,b∈R均有f(a+b)=f(a)+f(b)-1,且當x>0時,f(x)>1成立.
(1)求證為R上的增函數(shù);
(2)若$f({\sqrt{m}})+f({\sqrt{m}•x})>f({{x^2}-1})+1$對一切滿足$\frac{1}{16}≤m≤\frac{1}{4}$的m恒成立,求實數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.一條弦的長等于半徑,則這條弦所對的圓心角是____弧度.( 。
A.πB.$\frac{π}{2}$C.$\frac{π}{3}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.下列四個命題:①α∈(0,$\frac{π}{2}$)時,sinα+cosα>1;②α∈($\frac{π}{2}$,π)時,若sinα+cosα<0,則|cosα|>|sinα|;③對任意的向量,必有|$\overrightarrow{a}$+$\overrightarrow$|≤|$\overrightarrow{a}$|+|$\overrightarrow$|;④若$\overrightarrow{a}$≠$\overrightarrow{0}$,$\overrightarrow{a}$•$\overrightarrow$=$\overrightarrow{a}$•$\overrightarrow{c}$,則$\overrightarrow$=$\overrightarrow{c}$,正確的序號為①②③.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.數(shù)列{an}的前項n和${S_n}=3{n^2}-5n$,則a20的值為112.

查看答案和解析>>

同步練習冊答案