分析 (1)由已知利用正弦定理即可計算得解.
(2)由題意可求∠ACB=45°,進而利用正弦定理可求sin∠ABC=$\frac{1}{2}$,利用小邊對小角,特殊角的三角函數值即可得解.
解答 (本題滿分為10分)
解:(1)由于$\frac{\sqrt{6}}{sin45°}$=$\frac{AC}{sin60°}$,…3分
可得:AC=$\frac{\sqrt{6}×\frac{\sqrt{3}}{2}}{\frac{\sqrt{2}}{2}}$=3…5分
(2)∵AD∥BC,
∴∠ACB=45°,…6分
∴由$\frac{3\sqrt{2}}{sin45°}$=$\frac{3}{sin∠ABC}$,可得:sin∠ABC=$\frac{1}{2}$,…9分
∴利用小邊對小角可得:∠ABC=30°…10分
點評 本題主要考查了正弦定理在解三角形中的應用,考查了運算求解能力,屬于基礎題.
科目:高中數學 來源: 題型:選擇題
A. | 4個 | B. | 3個 | C. | 2個 | D. | 1個 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | [-3,1) | B. | (-3,1] | C. | (-∞,-3]∪(1,+∞) | D. | (-∞,-3)∪[1,+∞) |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com