【題目】下列說(shuō)法中,正確的個(gè)數(shù)是( )
①函數(shù)的零點(diǎn)有2個(gè);
②函數(shù)的最小正周期是;
③命題“函數(shù)在處有極值,則”的否命題是真命題;
④.
A. 0 B. 1 C. 2 D. 3
【答案】B
【解析】對(duì)于①由題意可知:要研究函數(shù)的零點(diǎn)個(gè)數(shù),只需研究函數(shù)的圖象交點(diǎn)個(gè)數(shù)即可。畫(huà)出函數(shù)的圖象,由圖象可得有3個(gè)交點(diǎn)。所以①不正確;
對(duì)于②,函數(shù),函數(shù)的最小正周期,所以②不正確;
對(duì)于③,命題“函數(shù)f(x)在x=x0處有極值,則f′(x0)=0”的否命題是:若f′(x0)=0,則函數(shù)f(x)在x=x0處有極值,顯然不正確。利用y=x3,x=0時(shí),導(dǎo)數(shù)為0,但是x=0不是函數(shù)的極值點(diǎn),所以是真命題;所以③不正確;
對(duì)于④, 的幾何意義是半圓的面積,圓的面積為π, .所以④正確;
本題選擇B選項(xiàng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)().
(Ⅰ)討論函數(shù)的單調(diào)性.
(Ⅱ)設(shè),若,都有 成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】直角三角形ABC中角A,B,C對(duì)邊長(zhǎng)分別為a,b,c,∠C=90°.
(1)若三角形面積為2,求斜邊長(zhǎng)c最小值;
(2)試比較an+bn與cn(n∈N*)的大小,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直三棱柱中,,,是的中點(diǎn),是等腰三角形,為的中點(diǎn),為上一點(diǎn).
(I)若平面,求;
(II)平面將三棱柱分成兩個(gè)部分,求較小部分與較大部分的體積之比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在上的函數(shù)為增函數(shù),對(duì)任意都有(為常數(shù))
(1)判斷為何值時(shí),為奇函數(shù),并證明;
(2)設(shè),是上的增函數(shù),且,若不等式對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.
(3)若,,為的前項(xiàng)和,求正整數(shù),使得對(duì)任意均有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知A= ,b2﹣a2= c2 .
(1)求tanC的值;
(2)若△ABC的面積為3,求b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于y=3sin(2x﹣ )有以下命題:
①f(x1)=f(x2)=0,則x1﹣x2=kπ(k∈Z);
②函數(shù)的解析式可化為y=3cos(2x﹣ );
③圖象關(guān)于x=﹣ 對(duì)稱(chēng);④圖象關(guān)于點(diǎn)(﹣ ,0)對(duì)稱(chēng).
其中正確的是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2015年12月,華中地區(qū)數(shù)城市空氣污染指數(shù)“爆表”,此輪污染為2015年以來(lái)最嚴(yán)重的污染過(guò)程,為了探究車(chē)流量與的濃度是否相關(guān),現(xiàn)采集到華中某城市2015年12月份某星期星期一到星期日某一時(shí)間段車(chē)流量與的數(shù)據(jù)如表:
時(shí)間 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 | 星期六 | 星期日 |
車(chē)流量(萬(wàn)輛) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
的濃度(微克/立方米) | 28 | 30 | 35 | 41 | 49 | 56 | 62 |
(1)由散點(diǎn)圖知與具有線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程;(提示數(shù)據(jù): )
(2)(I)利用(1)所求的回歸方程,預(yù)測(cè)該市車(chē)流量為12萬(wàn)輛時(shí)的濃度;(II)規(guī)定:當(dāng)一天內(nèi)的濃度平均值在內(nèi),空氣質(zhì)量等級(jí)為優(yōu);當(dāng)一天內(nèi)的濃度平均值在內(nèi),空氣質(zhì)量等級(jí)為良,為使該市某日空氣質(zhì)量為優(yōu)或者為良,則應(yīng)控制當(dāng)天車(chē)流量不超過(guò)多少萬(wàn)輛?(結(jié)果以萬(wàn)輛為單位,保留整數(shù))參考公式:回歸直線的方程是,其中, .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com