設(shè)f(x)=ax3+bx2+cx(a>b>c),已知函數(shù)f(x)在x=1處取得極值,且曲線f(x)在x=t處的切線斜率為-2a.
(1)求
c
a
的取值范圍;
(2)若函數(shù)f(x)的單調(diào)遞減區(qū)間為[m,n],求|m-n|的最小值;
(3)判斷曲線f(x)在x=t-
8
3
處的切線斜率的正負(fù),并說(shuō)明理由.
分析:(1)求出f(x)的導(dǎo)函數(shù)f′(x),因?yàn)閒(x)在x=1處取得極值,所以f′(1)=0得到a與b的關(guān)系式,由a>b>c變形可得
c
a
的范圍記作①,又根據(jù)曲線在x=t的斜率為-2a,可得f′(t)=-2a,得到關(guān)于t的一元二次方程,根據(jù)△大于等于0列出a與c的不等式,變形可得
c
a
的范圍記作②,求出①②的交集即可得到
c
a
的范圍;
(2)由f′(1)=0得到f′(x)=0有一根為1,設(shè)出另一根,根據(jù)韋達(dá)定理可表示出另一根,根據(jù)(1)求出的范圍求出另一根的范圍,由二次函數(shù)的性質(zhì)可知a大于0,令導(dǎo)函數(shù)小于0的不等式的解集應(yīng)該為x大于另一根小于1,所以|m-n|就等于1減另一根,求出1-另一根的范圍,由范圍即可得到|m-n|的最小值;
(3)根據(jù)x的范圍討論導(dǎo)函數(shù)的正負(fù)即可得到函數(shù)的單調(diào)區(qū)間,然后判斷t-
8
3
的范圍,即可得到其對(duì)應(yīng)的導(dǎo)函數(shù)大于0,即切線的斜率f′(t-
8
3
)大于0,所以曲線f(x)在x=t-
8
3
處的切線斜率為正.
解答:解:(1)f'(x)=3ax2+2bx+c,
由f(x)在x=1處取得極值,得f'(1)=0,即3a+2b+c=0,
由a>b>c知:a>0,c<0.
由2a>2b=-3a-c>2c,得-5<
c
a
<-1
①.
曲線f(x)在x=t處的切線斜率為-2a,得f'(t)=-2a,即3at2+2bt+c+2a=0.
由△=4b2-12a(c+2a)≥0,將2b=-3a-c代入,得c2-6ac-15a2≥0,
(
c
a
)2-6•
c
a
-15≥0
,解得:
c
a
≤3-2
6
c
a
≥3+2
6
②.
由①②聯(lián)立得
c
a
的取值范圍是(-5,3-2
6
]
;
(2)由f'(1)=0知:方程f'(x)=0即3ax2+2bx+c=0的一根為1,設(shè)另一根為x0,則
由韋達(dá)定理,得x0=
c
3a
∈(-
5
3
,
3-2
6
3
]

由a>0,令f'(x)=3ax2+2bx+c<0,得x0<x<1,則[m,n]=[x0,1],從而|m-n|=1-x0∈[
2
6
3
,
8
3
)

故|m-n|的最小值為
2
6
3
;
(3)由a>0知,當(dāng)x0<x<1時(shí)f'(x)<0;當(dāng)x<x0或x>1時(shí)f'(x)>0.
而f'(t)=-2a<0,則x0<t<1,于是t-
8
3
<-
5
3
x0
,故f′(t-
8
3
)>0
,即
曲線f(x)在x=t-
8
3
處的切線斜率為正.
點(diǎn)評(píng):本題是一道從三個(gè)“二次”即二次函數(shù)、二次方程和二次不等式的相互關(guān)系演變而來(lái)的代數(shù)推理題.三次函數(shù)與二次函數(shù)聯(lián)系緊密,因?yàn)閷⑷魏瘮?shù)求導(dǎo)就轉(zhuǎn)化為二次函數(shù).此題以導(dǎo)數(shù)的幾何意義為載體,巧妙地將導(dǎo)數(shù)與函數(shù)、方程與不等式等知識(shí)綜合交匯在一起,對(duì)邏輯推理能力的考查達(dá)到極致,確實(shí)是一道好題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=ax3+bx2+cx+d(a≠0)
(Ⅰ)f(x)的圖象關(guān)于原點(diǎn)對(duì)稱,當(dāng)x=
12
時(shí),f(x)的極小值為-1,求f(x)的解析式.
(Ⅱ)若a=b=d=1,f(x)是R上的單調(diào)函數(shù),求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=ax3+bx2+cx+d,f′(x)為其導(dǎo)數(shù),如圖是y=x•f′(x)圖象的一部分,則f(x)的極大值與極小值分別為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=ax3+bx2+4x,其導(dǎo)函數(shù)y=f′(x)的圖象經(jīng)過(guò)點(diǎn)(
23
,0)
,(2,0),
(1)求函數(shù)f(x)的解析式和極值;
(2)對(duì)x∈[0,3]都有f(x)≥mx2恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=ax3+bx2+cx的極小值為-8,其導(dǎo)函數(shù)y=f′(x)的圖象開(kāi)口向下且經(jīng)過(guò)點(diǎn)(-2,0),(
23
,0)

(I)求f(x)的解析式;
(II)方程f(x)+p=0有唯一實(shí)數(shù)解,求實(shí)數(shù)P的取值范圍.
(II)若對(duì)x∈[-3,3]都有f(x)≥m2-14m恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=ax3+bx+c(a≠0)是奇函數(shù),其圖象在點(diǎn)(1,f(1))處的切線與直線x-6y-7=0垂直,導(dǎo)函數(shù)f′(x)的最小值為-12,
(1)求a,b,c的值;        
(2)求函數(shù)f(x)在[-1,3]上的最值.

查看答案和解析>>

同步練習(xí)冊(cè)答案