(本小題滿分10分)
如圖,⊙O內(nèi)切于△ABC的邊于D,E,F(xiàn),AB=AC,連接AD交⊙O于點H,直線HF交BC的延長線于點G。
(1)求證:圓心O在直線AD上;
(2)求證:點C是線段GD的中點。
(1)
又△ABC是等腰三角形,所以AD是∠CAB的角分線
∴圓心O在直線AD上。(2))連接DF,由(I)知,DH是⊙O的直徑, ∴∠DFH=90°,∴∠FDH+∠FHD=90°,又∠G+∠FHD=90°,∴∠FDH=∠G,又⊙O與AC相切于點F ,∴∠AFH=∠GCF=∠FHD ∴∠GCF=∠G,∴CG=CF=CD,∴點C是線段GD的中點。
解析試題分析:(I)證明:
又△ABC是等腰三角形,所以AD是∠CAB的角分線
∴圓心O在直線AD上!5分
(II)連接DF,由(I)知,DH是⊙O的直徑,
∴∠DFH=90°,∴∠FDH+∠FHD=90°
又∠G+∠FHD=90°,∴∠FDH=∠G
又⊙O與AC相切于點F
∴∠AFH=∠GCF=∠FHD ∴∠GCF=∠G
∴CG=CF=CD
∴點C是線段GD的中點。 ………………10分
考點:圓的切線的性質(zhì)定理證明。
點評:本題利用了切線的性質(zhì),四邊形的內(nèi)角和為360度及圓周角定理求解.屬于基礎(chǔ)題型。
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,CD為△ABC外接圓的切線,AB的延長線交直線CD于點D,E、F分別為弦AB與弦AC上的點,
且BCAE=DCAF,B、E、F、C四點共圓.
(Ⅰ)證明:CA是△ABC外接圓的直徑;
(Ⅱ)若DB=BE=EA,求過B、E、F、C四點的圓的面積與△ABC外接圓面積的比值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知點M在菱形ABCD的BC邊上,連結(jié)AM交BD于點E,過菱形ABCD的頂點C作CN∥AM,分別交BD、AD于點F、N,連結(jié)AF、CE.判斷四邊形AECF的形狀,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分10分)
如圖,已知是的切線,為切點,是的割線,與交于兩點,圓心在的內(nèi)部,點是的中點.
(1)證明四點共圓;
(2)求的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分10分)
如圖,四邊形ACBD內(nèi)接于圓O,對角線AC與BD相交于M,AC⊥BD,E是DC中點連結(jié)EM交AB于F,作OH⊥AB于HH,
求證:(1)EF⊥AB (2)OH=ME
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分10分)選修4—1:幾何證明選講
如圖,四邊形是邊長為的正方形,以為圓心,為半徑的圓弧與以為直徑的半圓交于點,延長交于.
(1)求證:是的中點;
(2)求線段的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com