若函數(shù)滿足,并且當(dāng)時,,求當(dāng)時,=                     .

 

【答案】

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對定義在上,并且同時滿足以下兩個條件的函數(shù)稱為函數(shù)。

① 對任意的,總有;

② 當(dāng)時,總有成立。

已知函數(shù)是定義在上的函數(shù)。

(1)試問函數(shù)是否為函數(shù)?并說明理由;

(2)若函數(shù)函數(shù),求實數(shù)組成的集合;

(3)在(2)的條件下,討論方程解的個數(shù)情況。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆浙江省高一第一次統(tǒng)練數(shù)學(xué)試卷(解析版) 題型:填空題

若函數(shù)滿足,并且當(dāng)時,,則當(dāng)時,=                      

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆安徽省高一下學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題

函數(shù)在同一個周期內(nèi),當(dāng) 時,取最大值1,當(dāng)時,取最小值

(1)求函數(shù)的解析式

(2)函數(shù)的圖象經(jīng)過怎樣的變換可得到的圖象?

(3)若函數(shù)滿足方程求在內(nèi)的所有實數(shù)根之和.

【解析】第一問中利用

又因

       函數(shù)

第二問中,利用的圖象向右平移個單位得的圖象

再由圖象上所有點的橫坐標(biāo)變?yōu)樵瓉淼?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2012070911025203078536/SYS201207091103422182387233_ST.files/image020.png">.縱坐標(biāo)不變,得到的圖象,

第三問中,利用三角函數(shù)的對稱性,的周期為

內(nèi)恰有3個周期,

并且方程內(nèi)有6個實根且

同理,可得結(jié)論。

解:(1)

又因

       函數(shù)

(2)的圖象向右平移個單位得的圖象

再由圖象上所有點的橫坐標(biāo)變?yōu)樵瓉淼?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2012070911025203078536/SYS201207091103422182387233_ST.files/image020.png">.縱坐標(biāo)不變,得到的圖象,

(3)的周期為

內(nèi)恰有3個周期,

并且方程內(nèi)有6個實根且

同理,

故所有實數(shù)之和為

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)滿足,并且當(dāng)時,,則當(dāng)時, = _________________________ .

查看答案和解析>>

同步練習(xí)冊答案