【題目】在海岸處發(fā)現(xiàn)北偏東方向,距海里的處有一艘走私船.處北偏西方向,距海里的處的我方緝私船奉命以海里小時(shí)的速度追截走私船,此時(shí)走私船正以海里小時(shí)的速度從處向北偏東方向逃竄.問(wèn):緝私船沿什么方向行駛才能最快截獲走私船?并求出所需時(shí)間.

【答案】緝私船應(yīng)沿北偏東的方向行駛,才能最快截獲走私船,大約需要分鐘.

【解析】

設(shè)緝私船追上走私船需小時(shí),進(jìn)而可表示出,進(jìn)而在中利用余弦定理求得,進(jìn)而在中,根據(jù)正弦定理可求得的值,進(jìn)而求得進(jìn)而求得,進(jìn)而利用求得

如圖,設(shè)緝私船應(yīng)沿方向行駛小時(shí),才能最快截獲走私船(在點(diǎn)),

海里,海里,

中,由余弦定理,得

,

解得.

,

,故點(diǎn)在點(diǎn)的正東方向上,

,

中,由正弦定理,得,

.

,

緝私船沿北偏東的方向行駛.

又在中,,,

,,即

解得小時(shí)分鐘.

緝私船應(yīng)沿北偏東的方向行駛,才能最快截獲走私船,大約需要分鐘.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是定義在[-1,1]上的奇函數(shù),且,若任意的,當(dāng)時(shí),總有

1)判斷函數(shù)[-1,1]上的單調(diào)性,并證明你的結(jié)論;

2)解不等式:;

3)若對(duì)所有的恒成立,其中是常數(shù)),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率e= ,左、右焦點(diǎn)分別為F1、F2 , 定點(diǎn),P(2, ),點(diǎn)F2在線段PF1的中垂線上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線l:y=kx+m與橢圓C交于M、N兩點(diǎn),直線F2M、F2N的傾斜角分別為α、β且α+β=π,求證:直線l過(guò)定點(diǎn),并求該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)是不小于3的正整數(shù),集合,對(duì)于集合中任意兩個(gè)元素.

定義1:.

定義2:若,則稱,互為相反元素,記作,或.

(Ⅰ)若,,試寫(xiě)出,以及的值;

(Ⅱ)若,證明:;

(Ⅲ)設(shè)是小于的正奇數(shù),至少含有兩個(gè)元素的集合,且對(duì)于集合中任意兩個(gè)不相同的元素,,都有,試求集合中元素個(gè)數(shù)的所有可能值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓Γ: + =1(a>b>0)的離心率與雙曲線x2﹣y2=a2的離心率之和為 ,B1、B2為橢圓Γ短軸的兩個(gè)端點(diǎn),P是橢圓Γ上一動(dòng)點(diǎn)(不與B1、B2重合),直線B1P、B2P分別交直線l:y=4于M、N兩點(diǎn),△B1B2P的面積記為S1 , △PMN的面積記為S2 , 且S1的最大值為4
(1)求橢圓Γ的方程;
(2)若S2=λS1 , 當(dāng)λ取最小值時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C: + =1(a>b>0)的焦點(diǎn)為F1 , F2 , 離心率為 ,點(diǎn)P為其上動(dòng)點(diǎn),且三角形PF1F2的面積最大值為 ,O為坐標(biāo)原點(diǎn).
(1)求橢圓C的方程;
(2)若點(diǎn)M,N為C上的兩個(gè)動(dòng)點(diǎn),求常數(shù)m,使 =m時(shí),點(diǎn)O到直線MN的距離為定值,求這個(gè)定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且三角形的面積S= accosB.
(1)求角B的大;
(2)若a=2 ,點(diǎn)D在AB的延長(zhǎng)線上,且AD=3,cos∠ADC= ,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】牛頓法求方程f(x)=0近似根原理如下:求函數(shù)y=f(x)在點(diǎn)(xn , f(xn))處的切線y=f′(xn)(x﹣xn)+f(xn),其與x軸交點(diǎn)橫坐標(biāo)xn+1=xn (n∈N*),則xn+1比xn更靠近f(x)=0的根,現(xiàn)已知f(x)=x2﹣3,求f(x)=0的一個(gè)根的程序框圖如圖所示,則輸出的結(jié)果為(
A.2
B.1.75
C.1.732
D.1.73

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ﹣2cosθ﹣6sinθ+ =0,直線l的參數(shù)方程為 (t為參數(shù)).
(1)求曲線C的普通方程;
(2)若直線l與曲線C交于A,B兩點(diǎn),點(diǎn)P的坐標(biāo)為(3,3),求|PA|+|PB|的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案