18.設(shè)函數(shù)f(x)=(sinx+cosx)2+cos2x.
(Ⅰ)求f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)求f(x)在區(qū)間[-$\frac{π}{2}$,$\frac{π}{6}$]上的最大值和最小值.

分析 (Ⅰ)化簡已知函數(shù)可得f(x)=1+$\sqrt{2}$sin(2x+$\frac{π}{4}$),解不等式2kπ-$\frac{π}{2}$≤2x+$\frac{π}{4}$≤2kπ+$\frac{π}{2}$可得;
(Ⅱ)由x∈[-$\frac{π}{2}$,$\frac{π}{6}$],可得2x+$\frac{π}{4}$∈[-$\frac{3π}{4}$,$\frac{7π}{12}$],可得三角函數(shù)的最值.

解答 解:(Ⅰ)化簡已知函數(shù)可得f(x)=(sinx+cosx)2+cos2x
=1+sin2x+cos2x=1+$\sqrt{2}$sin(2x+$\frac{π}{4}$),
由2kπ-$\frac{π}{2}$≤2x+$\frac{π}{4}$≤2kπ+$\frac{π}{2}$可得kπ-$\frac{3π}{8}$≤x≤kπ+$\frac{π}{8}$,
∴f(x)的單調(diào)遞增區(qū)間為:[kπ-$\frac{3π}{8}$,kπ+$\frac{π}{8}$]k∈Z;
(Ⅱ)∵x∈[-$\frac{π}{2}$,$\frac{π}{6}$],∴2x+$\frac{π}{4}$∈[-$\frac{3π}{4}$,$\frac{7π}{12}$],
∴當2x+$\frac{π}{4}$=$\frac{π}{2}$即x=$\frac{π}{8}$時,f(x)有最大值$\sqrt{2}$+1,
當2x+$\frac{π}{4}$=-$\frac{π}{2}$即x=-$\frac{3π}{8}$時,f(x)有最小值-$\sqrt{2}$+1

點評 本題考查兩角和與差的正弦函數(shù),涉及三角函數(shù)的單調(diào)性和周期性,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.(1)已知圓(x+2)2+y2=1過橢圓C的一個頂點和焦點,求橢圓C標準方程.
(2)已知橢圓$\frac{{x}^{2}}{8+k}$+$\frac{{y}^{2}}{9}$=1的離心率為$\frac{1}{2}$,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)f(x)=$\frac{1}{1-x}$+lg(2+x)的定義域是( 。
A.(-2,+∞)B.(-∞,-2)C.(-2,1)D.(-2,1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=x2-1,g(x)=1+ax(a∈R),
(1)若a=-1,解不等式|f(x)|≤g(x);
(2)討論關(guān)于x的方程|f(x)|=g(x)的根的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.三個數(shù)a=0.152,b=20.15,c=log20.15之間的大小關(guān)系是( 。
A.c<a<bB.c<b<aC.a<b<cD.b<c<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,若acosC+ccosA=bsinB,則△ABC的形狀一定是( 。
A.等邊三角形B.直角三角形
C.鈍角三角形D.不含60°角的等腰三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知p:$\frac{1}{4}$≤2x≤$\frac{1}{2}$,q:x+$\frac{1}{x}$∈[-$\frac{5}{2}$,-2],則q是p的( 。
A.充分不必要條件B.必要不充分條件
C.必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.f(x)=$\left\{\begin{array}{l}{ln(x+1)-\frac{1}{1+{x}^{2}},x≥0}\\{ln(-x+1)-\frac{1}{1+{x}^{2}},x<0}\end{array}\right.$,則使得f(a-2)<f(4-a2)成立的a取值范圍是a>2或a<-3或-1<a<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若函數(shù)f(x)=$\frac{kx+7}{\sqrt{k{x}^{2}+4kx+3}}$的定義域為R,則實數(shù)k的取值范圍為[0,$\frac{3}{4}$).

查看答案和解析>>

同步練習(xí)冊答案