給出30行30列的數(shù)表A:,其特點(diǎn)是每行每列都構(gòu)成等差數(shù)列,記數(shù)表主對(duì)角線上的數(shù)1,10,21,34,…,1074按順序構(gòu)成數(shù)列{bn},存在正整數(shù)s、t(1<s<t)使b1,bs,bt成等差數(shù)列,試寫(xiě)出一組(s,t)的值   
【答案】分析:由題意可得,b2-b1=9b3-b2=11…bn-bn-1=2n+5,利用疊加可求bn,然后由b1,bs,bt成等差數(shù)列可得2bs=b1+bt,代入通項(xiàng)后即可求解滿足題意的t,s
解答:解:由題意可得,
b2-b1=9
b3-b2=11

bn-bn-1=2n+5
以上n-1個(gè)式子相加可得,bn-b1=9+11+…+2n+5=n2+6n-7
∴bn=n2+6n-6
∵b1,bs,bt成等差數(shù)列
∴2bs=b1+bt
∴2(s2+6s-6)=1+t2+6t-6
整理可得,2(s+3)2=(t+3)2+16
∵1<s<t≤30且s,t∈N*
經(jīng)檢驗(yàn)當(dāng)s=17,t=25時(shí)符合題意
故答案為:(17,25)
點(diǎn)評(píng):本題主要考查了數(shù)列的通項(xiàng)公式的求解,要注意疊加法的應(yīng)用,屬于公式的靈活應(yīng)用
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•寶山區(qū)二模)給出30行30列的數(shù)表A:
15913117
5101520150
9152127183
13202734216
1171501832161074
,其特點(diǎn)是每行每列都構(gòu)成等差數(shù)列,記數(shù)表主對(duì)角線上的數(shù)1,10,21,34,…,1074按順序構(gòu)成數(shù)列{bn},存在正整數(shù)s、t(1<s<t)使b1,bs,bt成等差數(shù)列,試寫(xiě)出一組(s,t)的值
(17,25)
(17,25)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年上海市四區(qū)(靜安、楊浦、青浦、寶山)高考二模理科數(shù)學(xué)試卷(帶解析) 題型:填空題

給出30行30列的數(shù)表,其特點(diǎn)是每行每列都構(gòu)成等差數(shù)列,記數(shù)表主對(duì)角線上的數(shù)按順序構(gòu)成數(shù)列,存在正整數(shù)使成等差數(shù)列,試寫(xiě)出一組的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年上海市四區(qū)(靜安、楊浦、青浦、寶山)高考二模理科數(shù)學(xué)試卷(解析版) 題型:填空題

給出30行30列的數(shù)表,其特點(diǎn)是每行每列都構(gòu)成等差數(shù)列,記數(shù)表主對(duì)角線上的數(shù)按順序構(gòu)成數(shù)列,存在正整數(shù)使成等差數(shù)列,試寫(xiě)出一組的值

 

查看答案和解析>>

同步練習(xí)冊(cè)答案