【題目】設(shè)函數(shù) ,則下列結(jié)論正確的是(
①f(x)的圖象關(guān)于直線 對(duì)稱
②f(x)的圖象關(guān)于點(diǎn) 對(duì)稱
③f(x)的圖象向左平移 個(gè)單位,得到一個(gè)偶函數(shù)的圖象
④f(x)的最小正周期為π,且在 上為增函數(shù).
A.③
B.①③
C.②④
D.①③④

【答案】A
【解析】解:①∵2× + =π,x=π不是正弦函數(shù)的對(duì)稱軸,故①錯(cuò)誤;
②∵2× + = ,( ,0)不是正弦函數(shù)的對(duì)稱中心,故②錯(cuò)誤;
③f(x)的圖象向左平移 個(gè)單位,得到y(tǒng)=sin[2(x+ )+ ]=sin(2x+ )=cos2x,y=cos2x為偶函數(shù),故③正確;
④由x∈ ,得2x+ ∈[ ],∵[ ]不是正弦函數(shù)的單調(diào)遞增區(qū)間,故④錯(cuò)誤;
故選A
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解正弦函數(shù)的單調(diào)性的相關(guān)知識(shí),掌握正弦函數(shù)的單調(diào)性:在上是增函數(shù);在上是減函數(shù),以及對(duì)正弦函數(shù)的對(duì)稱性的理解,了解正弦函數(shù)的對(duì)稱性:對(duì)稱中心;對(duì)稱軸

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】電視傳媒公司為了解某地區(qū)電視觀眾對(duì)某類體育節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查.下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時(shí)間的頻率分布直方圖:將日均收看該體育節(jié)目時(shí)間不低于40分鐘的觀眾稱為“體育迷”根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此資料你是否認(rèn)為“體育迷“與性別有關(guān)?

非體育迷

體育迷

合計(jì)

10

55

合計(jì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線 的兩條漸近線分別為l1 , l2 , 經(jīng)過右焦點(diǎn)F垂直于l1的直線分別交l1 , l2 于 A,B 兩點(diǎn).若| |,| |,| |成等差數(shù)列,且 反向,則該雙曲線的離心率為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】C.[選修4-4:坐標(biāo)系與參數(shù)方程]
在平面直角坐標(biāo)系 中,已知直線 (l為參數(shù))與曲線 為參數(shù))相交于 , 兩點(diǎn),求線段 的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 =(3,﹣1),| |= =﹣5, =x +(1﹣x)
(Ⅰ)若 ,求實(shí)數(shù)x的值;
(Ⅱ)當(dāng)| |取最小值時(shí),求 的夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓O1:(x﹣2)2+y2=16和圓O2:x2+y2=r2(0<r<2),動(dòng)圓M與圓O1、圓O2都相切,切圓圓心M的軌跡為兩個(gè)橢圓,這兩個(gè)橢圓的離心率分別為e1 , e2(e1>e2),則e1+2e2的最小值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果為(

A.4
B.9
C.7
D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(x﹣1)ex+ax2有兩個(gè)零點(diǎn). (Ⅰ)求a的取值范圍;
(Ⅱ)設(shè)x1 , x2是f(x)的兩個(gè)零點(diǎn),證明x1+x2<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=xe2x﹣lnx﹣ax.
(1)當(dāng)a=0時(shí),求函數(shù)f(x)在[ ,1]上的最小值;
(2)若x>0,不等式f(x)≥1恒成立,求a的取值范圍;
(3)若x>0,不等式f( )﹣1≥ e + 恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案