【題目】下列各組函數(shù)中,表示同一函數(shù)的是(
A.f(x)=x﹣1,g(x)= ﹣1
B.f(x)=|x|,g(x)=( 2
C.f(x)=x,g(x)=
D.f(x)=2x,g(x)=

【答案】C
【解析】解:A.g(x)= ﹣1=x﹣1,(x≠0),函數(shù)f(x)和g(x)的定義域不相同,不是同一函數(shù).
B.g(x)=( 2=x,(x≥0),函數(shù)f(x)和g(x)的定義域不相同,不是同一函數(shù).
C.g(x)= =x,函數(shù)f(x)和g(x)的定義域和對應法則相同,是同一函數(shù).
D.g(x)= =2|x|,函數(shù)f(x)和g(x)的對應法則不相同,不是同一函數(shù).
故選:C.
【考點精析】本題主要考查了判斷兩個函數(shù)是否為同一函數(shù)的相關知識點,需要掌握只有定義域和對應法則二者完全相同的函數(shù)才是同一函數(shù)才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某校為研究學生語言學科的學習情況,現(xiàn)對高二200名學生英語和語文某次考試成績進行抽樣分析. 將200名學生編號為001,002,…,200,采用系統(tǒng)抽樣的方法等距抽取10名學生,將10名學生的兩科成績(單位:分)繪成折線圖如下:

(Ⅰ)若第一段抽取的學生編號是006,寫出第五段抽取的學生編號;

(Ⅱ)在這兩科成績差超過20分的學生中隨機抽取2人進行訪談,求2人成績均是語文成績高于英語成績的概率;

(Ⅲ)根據(jù)折線圖,比較該校高二年級學生的語文和英語兩科成績,寫出你的結論和理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列四個結論中:
(1)如果兩個函數(shù)都是增函數(shù),那么這兩個函數(shù)的積運算所得函數(shù)為增函數(shù);
(2)奇函數(shù)f(x)在[0,+∞)上是增函數(shù),則f(x)在R上為增函數(shù);
(3)既是奇函數(shù)又是偶函數(shù)的函數(shù)只有一個;
(4)若函數(shù)f(x)的最小值是a,最大值是b,則f(x)值域為[a,b].
其中正確結論的序號為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,已知曲線的參數(shù)方程為 (為參數(shù)),以直角坐標系原點為極點, 軸的正半軸為極軸建立極坐標系,直線的極坐標方程為.

(Ⅰ)求曲線的普通方程與直線的直角坐標方程;

(Ⅱ)設點為曲線上的動點,求點到直線距離的最大值及其對應的點的直角坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】輪船從某港口將一些物品送到正航行的輪船上,在輪船出發(fā)時,輪船位于港口北偏西且與相距20海里的處,并正以30海里的航速沿正東方向勻速行駛,假設輪船沿直線方向以海里/小時的航速勻速行駛,經(jīng)過小時與輪船相遇.

(1)若使相遇時輪船航距最短,則輪船的航行速度大小應為多少?

(2)假設輪船的最高航速只能達到30海里/小時,則輪船以多大速度及什么航行方向才能在最短時間與輪船相遇,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正方形的對角線相交于點,四邊形為矩形,平面平面.

(1)求證:平面平面

(2)若點在線段上,且,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】計算:
(1)[(5 0.5+(0.008) ÷(0.2)1]÷0.06250.25;
(2)[(1﹣log63)2+log62log618]÷log64.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知A,B是拋物線x2=2pyp>0)上的兩個動點,O為坐標原點,非零向量滿足

(1)求證:直線AB經(jīng)過一定點;

(2)當AB的中點到直線y-2x=0的距離的最小值為時,求p的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知全集U=R,函數(shù)f(x)=lg(4﹣x)﹣ 的定義域為集合A,集合B={x|﹣2<x<a}.
(1)求集合UA;
(2)若A∪B=B,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案