若一次函數(shù)f(x)在區(qū)間[-1,3]上是減函數(shù),且最小值為0,最大值為2,則f(x)的解析式為
 
考點(diǎn):函數(shù)解析式的求解及常用方法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)題意,設(shè)出一次函數(shù)f(x)的解析式,列出方程組,解方程組求出f(x)的解析式.
解答: 解:設(shè)一次函數(shù)f(x)的解析式為y=kx+b,
根據(jù)題意,得
3k+b=0
-k+b=2
;
解得k=-
1
2
,b=
3
2
;
∴f(x)的解析式為f(x)=-
1
2
x+
3
2

故答案為:f(x)=-
1
2
x+
3
2
點(diǎn)評:本題考查了利用待定系數(shù)法求函數(shù)的解析式的問題,解題時應(yīng)根據(jù)題意,設(shè)函數(shù)的解析式,從而解答問題,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正方體ABCD-A1B1C1D1中,AB=2,E,F(xiàn)分別是BB1,CD的中點(diǎn),(如圖建立空間直角坐標(biāo)系)
(1)求證:D1F⊥平面ADE;
(2)求異面直線EF和CB1所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{bn}(n∈N*)是遞增的等比數(shù)列,且b1,b3為方程x2-5x+4=0的兩根.
(Ⅰ)求數(shù)列{bn}的通項公式;
(Ⅱ)若an=log2bn+3,求證:數(shù)列{an}是等差數(shù)列;
(Ⅲ)若cn=an•bn(n∈N*),求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,函數(shù)f(x)=
|x-a|
x+2a
在區(qū)間[0,4]上的最大值為
7
10
,則a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A(1,0,0),B(0,1,1),C(1,1,0),D(1,2,0),E(0,0,1),則直線DE與平面ABC的位置關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若an=
1
n
,則a1a2+a2a3+…+a2010a2011=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
x
-x(x≥0)的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C的極坐標(biāo)方程是ρ=2,以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,則曲線C的直角坐標(biāo)方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=(
1
2
x+log 
1
2
x在區(qū)間[1,2]上的最大值是
 

查看答案和解析>>

同步練習(xí)冊答案