設數(shù)列{an}為等比數(shù)列,各項均為正數(shù),且a2a6=4,則a1a2…a7=
 
考點:等比數(shù)列的性質(zhì)
專題:計算題,等差數(shù)列與等比數(shù)列
分析:利用等比數(shù)列通項的性質(zhì),即可得出結論.
解答: 解:∵數(shù)列{an}為等比數(shù)列,各項均為正數(shù),且a2a6=4,
∴a4=2,
∵數(shù)列{an}為等比數(shù)列,
∴a1a2…a7=a47=27=128.
故答案為:128.
點評:本題主要考查了等比數(shù)列的性質(zhì)的簡單應用,屬于基礎試題
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,海中有一小島B,周圍3.8海里內(nèi)有暗礁.一軍艦從A地出發(fā)由西向東航行,望見小島B在北偏東75°,航行8海里到達C處,望見小島B在北偏東60°.
(1)求C處與小島B的距離BC.
(2)若此艦不改變艦行的方向繼續(xù)前進,問此艦有沒有角礁的危險?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=lg(
1-x
1+x
)的定義域是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

log23•log98=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=
2x-1
+
5-2x
(
1
2
<x<
5
2
)
的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xoy中,以坐標原點為極點,以x軸的非負半軸為極軸,建立極坐標系,已知直線l的參數(shù)方程為
x=
2
+t
y=t
(t為參數(shù)),圓C的極坐標方程是ρ=1.
(Ⅰ)求直線l與圓C的公共點個數(shù);
(Ⅱ)在平面直角坐標系中,圓C經(jīng)過伸縮變換
x′=x
y′=2y
得到曲線C′,設M(x,y)為曲線C′上一點,求4x2+xy+y2的最大值,并求相應點M的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

判斷下列命題的真假:
①若y=sin(2x+φ)為偶函數(shù),則φ=
π
2
;
②若xlnx>0,則x>1;
③若數(shù)列{an}的通項公式為an=16-2n,則其前n項和Sn的最大項為S8;
④已知拋物線方程為y2=4x,對任意點A(4,a),在拋物線上有一動點P,且P到y(tǒng)軸的距離為d,則當|a|>4,時|PA|+d的最小值與a有關,當|a|<4時,|PA|+d的最小值與a無關;
其中,正確的命題為
 
(把所有正確命題的序號都填上).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

向量
a
=(1,2),
b
=(1,-λ),在區(qū)間[-5,5]上隨機取一個數(shù)λ,使向量2
a
+
b
a
-
b
的夾角為銳角的概率為( 。
A、
1
2
B、
2
7
C、
3
4
D、
3
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若連續(xù)拋擲兩次骰子得到的點數(shù)分別為m,n,m+n=5的概率是( 。
A、
1
12
B、
1
9
C、
1
6
D、
1
3

查看答案和解析>>

同步練習冊答案