【題目】設(shè)表示不大于實(shí)數(shù)的最大整數(shù),函數(shù),若關(guān)于的方程有且只有5個(gè)解,則實(shí)數(shù)的取值范圍為( )
A. B. C. D.
【答案】A
【解析】
根據(jù)分段函數(shù)的解析式,先討論當(dāng)x>0時(shí),函數(shù)零點(diǎn)的個(gè)數(shù)為三個(gè),再討論當(dāng)x≤0時(shí),函數(shù)的零點(diǎn)的個(gè)數(shù)為2個(gè),利用導(dǎo)數(shù)結(jié)合數(shù)形結(jié)合分析得解.
首先,確定在x>0上,方程f(x)=1的解.
時(shí),在,
,
所以由取整意義有[lnx]=-(n+1),
又
即在上,恒有
取n=0,,
令此時(shí)有一根,
當(dāng)n≥1時(shí),恒有f(x)-1>1,
此時(shí)在上無(wú)根.
在上,,
,
又
所以在上,恒有,
.
n=1時(shí),在上,
有
n=2時(shí),在
有
即
所以此時(shí)有兩根,
這樣在
有三根,
在
顯然有一根
所以在有且僅有一根,
由“洛必達(dá)法則”
是先增后減,
得
或a>0.
單調(diào)遞增,
即
故選:A
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的一個(gè)頂點(diǎn)是,離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知矩形的四條邊都與橢圓相切,設(shè)直線AB方程為,求矩形面積的最小值與最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一半徑為的水輪,水輪圓心距離水面2,已知水輪每分鐘轉(zhuǎn)動(dòng)(按逆時(shí)針方向)3圈,當(dāng)水輪上點(diǎn)從水中浮現(xiàn)時(shí)開始計(jì)時(shí),即從圖中點(diǎn)開始計(jì)算時(shí)間.
(1)當(dāng)秒時(shí)點(diǎn)離水面的高度_________;
(2)將點(diǎn)距離水面的高度(單位: )表示為時(shí)間(單位: )的函數(shù),則此函數(shù)表達(dá)式為_______________ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在下列四個(gè)幾何體中,它們的三視圖(主視圖、左視圖、俯視圖)中有且僅有兩個(gè)相同,而另一個(gè)不同的幾何體是( )
(1)棱長(zhǎng)為1的正方體
(2)底面直徑和高均為1的圓柱
(3)底面直徑和高均為1的圓錐
(4)底面邊長(zhǎng)為1、高為2的正四棱柱
A.(2)(3)(4)B.(1)(2)(3)
C.(1)(3)(4)D.(1)(2)(4)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問題:“遠(yuǎn)望巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請(qǐng)問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( )
A. 1盞 B. 3盞 C. 5盞 D. 9盞
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四棱錐的底面為直角梯形,,,底面,且,,是的中點(diǎn).
(1)證明:面面;
(2)求與夾角的余弦值;
(3)求面與面所成二面角余弦值的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(為自然對(duì)數(shù)的底數(shù)).
(1)若對(duì)于任意實(shí)數(shù),恒成立,試確定的取值范圍;
(2)當(dāng)時(shí),函數(shù)在上是否存在極值?若存在,請(qǐng)求出這個(gè)極值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn),過直線左側(cè)的動(dòng)點(diǎn)作于點(diǎn)的角平分線交軸于點(diǎn),且,記動(dòng)點(diǎn)的軌跡為曲線.
(1)求曲線的方程;
(2)過點(diǎn)作直線交曲線于兩點(diǎn),點(diǎn)在上,且軸,試問:直線是否恒過定點(diǎn)?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列關(guān)于命題的說(shuō)法錯(cuò)誤的是( )
A.命題“若x2﹣3x+2=0,則x=2”的逆否命題為“若x≠2,則x2﹣3x+2≠0”
B.“a=2”是“函數(shù)f(x)=ax在區(qū)間(﹣∞,+∞)上為增函數(shù)”的充分不必要條件
C.命題“x∈R,使得x2+x+1<0”的否定是:“x∈R,均有x2+x+1≥0”
D.“若f ′()=0,則為y=f(x)的極值點(diǎn)”為真命題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com