【題目】已知函數(shù)f(x)=lnx﹣a(x﹣1),g(x)=ex(Ⅰ)若函數(shù)f(x)在區(qū)間(0,9]為增函數(shù),求實數(shù)a的取值范圍;
(Ⅱ)當a≠0時,過原點分別作曲線y=f(x)與y=g(x)的切線l1 , l2 , 已知兩切線的斜率互為倒數(shù),證明: <a<

【答案】解:(Ⅰ)由f(x)=lnx﹣a(x﹣1)得, f′(x)= ﹣a=
∵函數(shù)f(x)在區(qū)間(0,9]為增函數(shù),
∴f′(x)≥0在區(qū)間(0,9]恒成立,
≥0在區(qū)間(0,9]恒成立,
∴a≤ ,而 = ,
∴a∈(﹣∞, ];
(Ⅱ)證明:設切線l2的方程為y=k2x,切點為(x2 , y2),則y2=ex2 ,
k2=g′(x2)=ex2=
所以x2=1,y2=e,則k2=e.
由題意知,切線l1的斜率為k1= = ,l1的方程為y= x;
設l1與曲線y=f(x)的切點為(x1 , y1),則k1=f′(x1)= ﹣a= =
所以y1= =1﹣ax1 , a=
又因為y1=lnx1﹣a(x1﹣1),消去y1和a后,
整理得lnx1﹣1+ =0.
令m(x)=lnx﹣1+ =0,
則m′(x)= = ,m(x)在(0,1)上單調(diào)遞減,在(1,+∞)上單調(diào)遞增.
若x1∈(0,1),因為m( )=﹣2+e﹣ >0,m(1)=﹣ <0,所以x1∈( ,1),
而a= 在x1∈( ,1)上單調(diào)遞減,所以 <a<
若x1∈(1,+∞),因為m(x)在(1,+∞)上單調(diào)遞增,且m(e)=0,則x1=e,
所以a= =0(舍去).
綜上可知, <a<
【解析】(Ⅰ)求出函數(shù)的導數(shù),問題轉化為即 ≥0在區(qū)間(0,9]恒成立,即a≤ ,求出a的范圍即可;(Ⅱ)設切線l2的方程為y=k2x,從而由導數(shù)及斜率公式可求得切點為(1,e),k2=e;再設l1的方程為y= x;設l1與曲線y=f(x)的切點為(x1 , y1),從而可得y1= =1﹣ax1 , a= ;結合y1=lnx1﹣a(x1﹣1)可得lnx1﹣1+ =0,再令m(x)=lnx﹣1+ ,從而求導確定函數(shù)的單調(diào)性,從而確定 <a< ,問題得證.
【考點精析】掌握利用導數(shù)研究函數(shù)的單調(diào)性是解答本題的根本,需要知道一般的,函數(shù)的單調(diào)性與其導數(shù)的正負有如下關系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形 為菱形,四邊形 為平行四邊形,設 相交于點 ,

(1)證明:平面 平面
(2)若 ,求三棱錐 的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓E:x2+(y﹣ 2= 經(jīng)過橢圓C: + =1(a>b>0)的左右焦點F1 , F2 , 且與橢圓C在第一象限的交點為A,且F1 , E,A三點共線,直線l交橢圓C于M,N兩點,且 (λ≠0)
(1)求橢圓C的方程;
(2)當三角形AMN的面積取得最大值時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線C1 =1,雙曲線C2 =1(a>0,b>0)的左、右焦點分別為F1 , F2 , M 是雙曲線C2 一條漸近線上的點,且OM⊥MF2 , 若△OMF2的面積為 16,且雙曲線C1 , C2的離心率相同,則雙曲線C2的實軸長為(
A.4
B.8
C.16
D.32

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】知函數(shù)f(x)=ax2﹣2x+lnx(a≠0,a∈R).
(1)判斷函數(shù) f (x)的單調(diào)性;
(2)若函數(shù) f (x)有兩個極值點x1 , x2 , 求證:f(x1)+f(x2)<﹣3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】四棱錐P﹣ABCD的三視圖如圖所示,其五個頂點都在同一球面上,若四棱錐P﹣ABCD的側面積等于4(1+ ),則該外接球的表面積是(
A.4π
B.12π
C.24π
D.36π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設△ABC 的內(nèi)角 A,B,C 的對邊分別是a,b,c,且 a= b cosC+c sinB. (Ⅰ)求角B 的大小;
(Ⅱ)若點M 為BC的中點,且 AM=AC,求sin∠BAC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】極坐標系與直角坐標系xoy有相同的長度單位,以原點O為極點,以x軸正半軸為極軸.已知直線l的參數(shù)方程為 (t為參數(shù)),曲線C的極坐標方程為ρsin2θ=8cosθ. (I)求C的直角坐標方程;
(Ⅱ)設直線l與曲線C交于A,B兩點,求弦長|AB|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若命題p:從有2件正品和2件次品的產(chǎn)品中任選2件得到都是正品的概率為三分之一;命題q:在邊長為4的正方形ABCD內(nèi)任取一點M,則∠AMB>90°的概率為 ,則下列命題是真命題的是(
A.p∧q
B.(p)∧q
C.p∧(q)
D.q

查看答案和解析>>

同步練習冊答案