頂點在原點,焦點為
的拋物線的標準方程為( 。
解:由拋物線定義可知
。
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分14分)
設直線
與拋物線
交于不同兩點A、B,F(xiàn)為拋物線的焦點。
(1)求
的重心G的軌跡方程;
(2)如果
的外接圓的方程。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,在以點
為圓心,
為直徑的半圓
中,
,
是半圓弧上一點,
,曲線
是滿足
為定值的動點
的軌跡,且曲線
過點
.
(Ⅰ)建立適當?shù)钠矫嬷苯亲鴺讼担笄
的方程;
(Ⅱ)設過點
的直線l與曲線
相交于不同的兩點
、
若△
的面積不小于
,求直線
斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
已知
(
,0),
(1,0),
的周長為6.
(Ⅰ)求動點
的軌跡
的方程;
(II)試確定
的取值范圍,使得軌跡
上有不同的兩點
、
關于直線
對稱.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
為了加快經(jīng)濟的發(fā)展,某省選擇
兩城市作為龍頭帶動周邊城市的發(fā)展,決定在
兩城市的周邊修建城際輕軌,假設
為一個單位距離,
兩城市相距
個單位距離,設城際輕軌所在的曲線為
,使輕軌
上的點到
兩城市的距離之和為
個單位距離,
(1)建立如圖的直角坐標系,求城際輕軌所在曲線
的方程;
(2)若要在曲線
上建一個加油站
與一個收費站
,使
三點在一條直線上,并且
個單位距離,求
之間的距離有多少個單位距離?
(3)在
兩城市之間有一條與
所在直線成
的筆直公路
,直線
與曲線
交于
兩點,求四邊形
的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓的兩個焦點分別為
離心率e=
(1)求橢圓的方程。(2)若CD為過左焦點
的弦,求
的周長
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
的中心在原點,一個焦點
,且長軸長與短軸長的比是
.若橢圓
在第一象限的一點
的橫坐標為1,過點
作傾斜角互補的兩條不同的直線
,
分別交橢圓
于另外兩點
,
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)求證:直線
的斜率為定值;
(Ⅲ)求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
橢圓
與直線
交于
兩點,過原點與線段
中點的直線的斜率為
,則
的值為 ( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
設
分別是雙曲線
的左、右焦點,
是雙曲線上一點,且滿足
,則
的值是( )
A.6 | B.0 | C.12 | D. |
查看答案和解析>>