精英家教網 > 高中數學 > 題目詳情

(本小題滿分13分)

某公司有價值萬元的一條流水線,要提高該流水線的生產能力,就要對其進行技術改造,從而提高產品附加值,改造需要投入,假設附加值萬元與技術改造投入萬元之間的關系滿足:①的乘積成正比;②時,;③,其中為常數,且

(Ⅰ)設,求表達式,并求的定義域;

(Ⅱ)求出附加值的最大值,并求出此時的技術改造投入.

解:設,當時,,可得:,∴

∴定義域為,為常數,且。   ………………5分

(2) …………………………7分

時,即,時, ……………9分

,即,上為增函數

∴當時,         ……………………11分

∴當,投入時,附加值y最大,為萬元;

,投入時,附加值y最大,為萬元 ………13分

練習冊系列答案
相關習題

科目:高中數學 來源:2015屆江西省高一第二次月考數學試卷(解析版) 題型:解答題

(本小題滿分13分)已知函數.

(1)求函數的最小正周期和最大值;

(2)在給出的直角坐標系中,畫出函數在區(qū)間上的圖象.

(3)設0<x<,且方程有兩個不同的實數根,求實數m的取值范圍.

 

查看答案和解析>>

科目:高中數學 來源:2011-2012學年福建省高三年級八月份月考試卷理科數學 題型:解答題

(本小題滿分13分)已知定義域為的函數是奇函數.

(1)求的值;(2)判斷函數的單調性;

(3)若對任意的,不等式恒成立,求k的取值范圍.

 

查看答案和解析>>

科目:高中數學 來源:2011-2012學年福建省高三年級八月份月考試卷理科數學 題型:解答題

(本小題滿分13分)已知集合, ,.

(1)求(∁; (2)若,求的取值范圍.

 

查看答案和解析>>

科目:高中數學 來源:河南省09-10學年高二下學期期末數學試題(理科) 題型:解答題

 

(本小題滿分13分)如圖,正三棱柱的所有棱長都為2,的中點。

(Ⅰ)求證:∥平面

(Ⅱ)求異面直線所成的角。www.7caiedu.cn           

 

 

 

 

 

 


[來源:KS5

 

 

 

 

U.COM

查看答案和解析>>

科目:高中數學 來源:2010-2011學年福建省高三5月月考調理科數學 題型:解答題

(本小題滿分13分)

已知為銳角,且,函數,數列{}的首項.

(1) 求函數的表達式;

(2)在中,若A=2,,BC=2,求的面積

(3) 求數列的前項和

 

 

查看答案和解析>>

同步練習冊答案