3.已知函數(shù)f(x)為定義在R上的可導函數(shù),且為偶函數(shù),x≠0時,xf′(x)>0恒成立,則(  )
A.f(1)<f(-2)<f(3)B.f(-2)<f(1)<f(3)C.f(3)<f(-2)<f(1)D.f(3)<f(1)<f(-2)

分析 根據(jù)函數(shù)的單調性以及函數(shù)的奇偶性判斷即可.

解答 解:∵函數(shù)f(x)是偶函數(shù),x≠0時,xf′(x)>0恒成立,
∴x>0時,f(x)遞增,x<0時,f(x)遞減,f(-x)=f(x),
∴f(3)>f(-2)=f(2)>f(1),
故選:A.

點評 本題考查了函數(shù)的奇偶性和函數(shù)的單調性問題,是一道基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

12.已知函數(shù)$f(x)=\left\{\begin{array}{l}3x-\frac{1}{2}\;,x<1\\{2^x},x≥1.\end{array}\right.$則$f(f(\frac{1}{2}))$=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.定義在R上的偶函數(shù)f(x)滿足f(x)+f(x+1)=0,且在[-3,-2]上f(x)=2x+5,A、B是三邊不等的銳角三角形的兩內角,則下列不等式正確的是( 。
A.f(sinA)>f(sinB)B.f(cosA)>f(cosB)C.f(sinA)>f(cosB)D.f(sinA)<f(cosB)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.在平面直角坐標系xOy中,拋物線C:y2=4x的焦點為F,P為拋物線C上一點,且PF=5,則點P的橫坐標是4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知數(shù)列{an}滿足a1=1,(an-3)an+1-an+4=0(n∈N*).
(1)求a2,a3,a4;
(2)猜想{an}的通項公式,并用數(shù)學歸納法證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.當x∈R,|x|<1時,有如下表述式:1+x+x2+…+xn+…=$\frac{1}{1-{x}^{n}}$,
兩邊同時積分得:
${∫}_{0}^{\frac{1}{2}}$1dx+${∫}_{0}^{\frac{1}{2}}$xdx+${∫}_{0}^{\frac{1}{2}}$x2dx+…+${∫}_{0}^{\frac{1}{2}}$xndx+…=${∫}_{0}^{\frac{1}{2}}$$\frac{1}{1-x}$dx
從而得到如下等式:1×$\frac{1}{3}$+$\frac{1}{2}$×($\frac{1}{3}$)2+$\frac{1}{3}$×($\frac{1}{3}$)3+…+$\frac{1}{n+1}$×($\frac{1}{3}$)n+1+…=ln3-ln2.
請根據(jù)以上材料所蘊含的數(shù)學思想方法,計算:
Cn0×$\frac{1}{3}$+$\frac{1}{2}$Cn1×($\frac{1}{3}$)2+$\frac{1}{3}$Cn2×($\frac{1}{3}$)3+…+$\frac{1}{n+1}$Cnn×($\frac{1}{3}$)n+1=$\frac{1}{n+1}$$[(\frac{4}{3})^{n+1}-1]$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.如圖,在四棱錐P-ABCD中,底面ABCD為菱形,∠BAD=60°,PA=PD=AD=2,點M在線段PC上,N為AD的中點.
(1)求證:BC⊥平面PNB
(2)若平面PAD⊥平面ABCD,M是線段PC上一點,且二面角M-BN-D為60°,試確定M的位置.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.在邊長為1的等邊△ABC中,O為邊AC的中點,BO為邊AC上的中線,$\overrightarrow{BG}$=2$\overrightarrow{GO}$,設$\overrightarrow{CD}$∥$\overrightarrow{AG}$,若$\overrightarrow{AD}$=$\overrightarrow{AB}$+λ$\overrightarrow{AC}$(λ∈R),則|$\overrightarrow{AD}$|=$\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知向量$\overrightarrow{a}$=(2,3),$\overrightarrow$=(4,-3),則$\overrightarrow{a}$•$\overrightarrow$=-1.

查看答案和解析>>

同步練習冊答案