在四棱錐P-ABCD中,平面PAD⊥平面ABCD,PA=PD,底面ABCD是菱形,∠A=60°,E是AD的中點(diǎn),F(xiàn)是PC的中點(diǎn).
(Ⅰ)求證:BE⊥平面PAD;
(Ⅱ)求證:EF∥平面PAB;
(Ⅰ)證明:∵AB=2,∴AE=1,
∴BE2=AB2+AE2-2AB·AE·cos ∠A=4+1-2×2×1×cos 60°=3,
∴AE2+BE2=1+3=4=AB2,∴BE⊥AE.
又平面PAD⊥平面ABCD,交線為AD,
∴BE⊥平面PAD.
(Ⅱ)證明:取BC的中點(diǎn)G,連接GE,GF.則GF∥PB,EG∥AB,
又GF∩EG=G,∴平面EFG∥平面PAB,∴EF∥平面PAB.
(Ⅲ)解:∵AD∥BC,∴AD∥平面PBC.
∴點(diǎn)A到平面PBC的距離等于點(diǎn)E到平面PBC的距離.
因?yàn)槠矫鍼BE⊥平面PBC.
又平面PBE∩平面PBC=PB,
作EO⊥PB于O,則EO是E到平面PBC的距離,
且PE==1,BE=,∴PB=2.
由EO·PB=PE·EB,
∴EO==.
【解析】略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com