分析 利用已知三棱錐A-BCD的特點(diǎn)AB=AC=AD,先確定△ABD的外心O,及外接圓的半徑,然后證明O也是三棱錐A-BCD的外接球的球心,即可解答.
解答 解:∵如圖取BD的中點(diǎn)E,連接AE,CE.
則AE⊥BD,CE⊥BD.
∵平面ABD⊥平面BCD,
平面ABD∩平面BCD=BD,
∴AE⊥平面BCD,
又∵CE?平面BCD,
∴AE⊥CE.
設(shè)△ABD的外接圓的圓心為O,半徑為r.
∵AB=AD,
∴圓心O在AE所在的直線上.
∴r2=BE2+OE2=BE2+(r-AE)2.
∵在Rt△BCD中,BD=$\sqrt{16+16}$=4$\sqrt{2}$.
∴BE=EC=2$\sqrt{2}$.
∴在Rt△ABE中,AE=$\sqrt{12-8}$=2.
∴r2=8+(r-2)2,解得r=3.
∴OE=1.
在Rt△OEC中,OC=$\sqrt{O{E}^{2}+E{C}^{2}}$=3.
∴OA=OB=OC=OD=3.
∴點(diǎn)O是三棱錐A-BCD的外接球的球心,則球半徑R=3.
∴大圓面積S=πR2=9π.
故答案為:9π.
點(diǎn)評(píng) 本題考查球內(nèi)接多面體及其度量,考查空間想象能力,計(jì)算能力,解答的關(guān)鍵是確定球心位置,利用已知三棱錐的特點(diǎn)是解決問(wèn)題關(guān)鍵,屬于難題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
欄目1 | 欄目2 | 合計(jì) | |
家長(zhǎng) | |||
學(xué)生 | |||
合計(jì) |
P(K2≥x0) | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 | 0.001 |
x0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2016-2017學(xué)年安徽六安一中高一上國(guó)慶作業(yè)二數(shù)學(xué)試卷(解析版) 題型:填空題
已知函數(shù),,則的解析式是_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ($\frac{ln4}{3}$,+∞) | B. | ($\frac{ln2}{3}$,+∞) | C. | ($\frac{\sqrt{3}}{2}$,+∞) | D. | ($\frac{\sqrt{e}}{3}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 6 | B. | $5+\sqrt{2}$ | C. | $4+\sqrt{2}$ | D. | $4\sqrt{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com