7.設(shè)集合A={x∈Q|x>-1},則(  )
A.3∉AB.{$\sqrt{2}$}⊆AC.$\sqrt{2}$∈AD.$\sqrt{2}$∉A

分析 根據(jù)元素與集合的關(guān)系進(jìn)行判斷.

解答 解:由題意:A={x∈Q|x>-1},
對于A:應(yīng)該是3∈A,∴不對.
對于B、C,D選項(xiàng):$\sqrt{2}$是無理數(shù),那么{$\sqrt{2}$}⊆A,$\sqrt{2}$∈A都不對.∴$\sqrt{2}∉$A,對.
故選D.

點(diǎn)評 本題主要考查元素與集合的關(guān)系,屬于基礎(chǔ)題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.M是拋物線y2=4x上一點(diǎn),F(xiàn)是焦點(diǎn),且MF=4.過點(diǎn)M作準(zhǔn)線l的垂線,垂足為K,則三角形MFK的面積為4$\sqrt{3}$.該拋物線的焦點(diǎn)與雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1的一個焦點(diǎn)相同,且雙曲線的離心率為2,那么該雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1的漸近線方程為y=±$\sqrt{3}$x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.直線l1:$\sqrt{3}$x-y+1=0,l2:x+5=0,則直線l1與l2的相交所成的銳角為30°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.如圖,在正方體ABCD-A1B1C1D1中,上底面中心為O,則異面直線AO與DC1所成角的余弦值為$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.半徑為2cm的半圓紙片做成圓錐放在桌面上,它的最高處距離桌面$\sqrt{3}$cm.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知f(x-1)=x2,則 f(x2 )=(x2+1)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在平面直角坐標(biāo)系xOy中,雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{4}$=1(a>0)的一條漸近線與直線y=2x+1平行,則實(shí)數(shù)a的值是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若x,y滿足約束條件$\left\{\begin{array}{l}3x+y-6≤0\\ x+y≥2\\ y≤2\end{array}\right.$,則x2+y2的最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,在梯形ABCD中,AB∥CD,AB=4,AD=DC=CB=2,四邊形ACFE是矩形,AE=1,平面ACFE⊥平面ABCD,點(diǎn)G是BF的中點(diǎn).
(1)求證:CG∥平面ADF;
(2)求三棱錐E-AFB的體積.

查看答案和解析>>

同步練習(xí)冊答案