分析 由題意作出三角函數(shù)線,通過三角形的面積以及扇形面積的大小比較可得.
解答 解:在直角坐標(biāo)系中結(jié)合單位圓作出銳角α的正弦線和正切線,
由圖可知sinα=MP,α=$\widehat{AP}$,tanα=AT,
∵S△AOP=$\frac{1}{2}$×MP×1=$\frac{1}{2}$sinα,S扇形AOP=$\frac{1}{2}$×$\widehat{AP}$×1=$\frac{1}{2}$α,S△AOT=$\frac{1}{2}$×AT×1=$\frac{1}{2}$tanα,S△AOP<S扇形AOP<S△AOT,
∴MP<$\widehat{AP}$<AT,即sinα<α<tanα,
故答案為:sinα<α<tanα.
點(diǎn)評 本題考查三角函數(shù)線,考查轉(zhuǎn)化思想以及判斷能力,屬中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | -$\frac{\sqrt{3}}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$-1 | B. | 2-$\sqrt{3}$ | C. | $\frac{{\sqrt{5}}}{2}-1$ | D. | $\frac{{\sqrt{5}}}{2}-1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\overrightarrow{i}$+$\overrightarrow{j}$+$\overrightarrow{k}$ | B. | $\frac{1}{3}$$\overrightarrow{i}$+$\frac{1}{2}$$\overrightarrow{j}$+$\frac{1}{5}$$\overrightarrow{k}$ | C. | 3$\overrightarrow{i}$+2$\overrightarrow{j}$+5$\overrightarrow{k}$ | D. | 3$\overrightarrow{i}$+2$\overrightarrow{j}$-5$\overrightarrow{k}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com