10.某海輪以30公里/小里的速度航行,在A點(diǎn)測得海面上油井P在南偏東60°,向北航行40分鐘后到達(dá)B點(diǎn),測得油井P在南偏東30°,海輪改為北偏東60°的航向再行駛40分鐘到達(dá)C點(diǎn),求
①PC間的距離;
②在點(diǎn)C測得油井的方位角是多少?

分析 ①在△ABP中,根據(jù)正弦定理,求BP,再利用余弦定理算出PC的長,即可算出P、C兩地間的距離.
②證明CP∥AB,即可得出結(jié)論.

解答 解:①如圖,在△ABP中,AB=30×$\frac{40}{60}$=20,∠APB=30°,∠BAP=120°,
根據(jù)正弦定理得:$\frac{20}{\frac{1}{2}}=\frac{BP}{\frac{\sqrt{3}}{2}}$,∴BP=20$\sqrt{3}$.
在△BPC中,BC=30×$\frac{40}{60}$=20.
由已知∠PBC=90°,∴PC=40(n mile)      
∴P、C間的距離為40n mile.
②在△BPC中,∠CBP=90°,BC=20,PC=40,
∴sin∠BPC=$\frac{1}{2}$,
∴∠BPC=30°,
∵∠ABP=∠BPC=30°,
∴CP∥AB,
∴在點(diǎn)C測得油井P在C的正南40海里處.

點(diǎn)評 本題給出實(shí)際應(yīng)用問題,求兩地之間的距離,著重考查了正弦定理和解三角形的實(shí)際應(yīng)用等知識,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.1,1,2,3,5,8,13,這一列數(shù)的規(guī)律是:第1、第2個數(shù)是1,從第3個數(shù)起,該數(shù)是其前面2個數(shù)之和,試用循環(huán)語旬描述,計算這列數(shù)中前20個數(shù)之和的算法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列說法中,正確的是( 。
A.$\frac{y-{y}_{1}}{x-{x}_{1}}$=k為過點(diǎn)P(x1,y1)且斜率為k的直線方程
B.過y軸上一點(diǎn)(0,b)得直線方程可以表示為y=kx+b
C.若直線在x軸、y軸的截距分別為a與b,則該直線方程為$\frac{x}{a}$+$\frac{y}$=1
D.方程(x2-x1)(y-y1)=(y2-y1)(x-x1)表示過兩點(diǎn)P(x1,y1)、Q(x2,y2)一條直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知等比數(shù)列{an}中,a2=$\frac{1}{3}$,公比q=$\frac{1}{3}$,Sn為{an}的前n項和.
(1)求an和Sn
(2)設(shè)bn=log3a1+log3a2+…+log3an,求數(shù)列bn的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.與雙曲線3x2-y2=3的焦點(diǎn)相同且離心率互為倒數(shù)的橢圓方程為( 。
A.x2+$\frac{{y}^{2}}{3}$=1B.$\frac{{x}^{2}}{3}+{y}^{2}=1$C.$\frac{{x}^{2}}{12}+\frac{{y}^{2}}{16}=1$D.$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{12}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)函數(shù)f(x)的定義域?yàn)镽,對任意實(shí)數(shù)x、y都有f(x+y)=f(x)+f(y),當(dāng)x>0時f(x)<0且f(3)=-4.
(1)證明:函數(shù)f(x)為奇函數(shù);
(2)證明:函數(shù)f(x)在(-∞,+∞)上為減函數(shù).
(3)求f(x)在區(qū)間[-9,9]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知全集U={x|x-2≥0或x-1≤0},A={x|x<1或x>3},B={x|x≤1或x>2},求A∩B,A∪B,(∁UA)∩(∁UB),(∁UA)∪(∁UB).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.如圖,側(cè)棱長為2a的正三棱柱的左視圖的面積為$\sqrt{3}$a2,則該正三棱柱的側(cè)面積為( 。
A.3a2B.4a2C.6a2D.8a2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.f(x)=ax2+2(a-1)x+2在(-∞,4]上單調(diào)遞減,則a的取值范圍是( 。
A.$a≤\frac{1}{5}$B.$a≥\frac{1}{5}$C.$0<a≤\frac{1}{5}$D.$0≤a≤\frac{1}{5}$

查看答案和解析>>

同步練習(xí)冊答案