對于每項均是正整數(shù)的數(shù)列A:a1,a2,…,an,定義變換T1,T1將數(shù)列A變換成數(shù)列T1(A):n,a1-1,a2-1,…,an-1.
對于每項均是非負整數(shù)的數(shù)列B:b1,b2,…,bm,定義變換T2,T2將數(shù)列B各項從大到小排列,然后去掉所有為零的項,得到數(shù)列T2(B);
又定義S(B)=2(b1+2b2+…+mbm)+b12+b22+…+bm2.設(shè)A0是每項均為正整數(shù)的有窮數(shù)列,令A(yù)k+1=T2(T1(Ak))(k=0,1,2,…).
(Ⅰ)如果數(shù)列A0為5,3,2,寫出數(shù)列A1,A2;
(Ⅱ)對于每項均是正整數(shù)的有窮數(shù)列A,證明S(T1(A))=S(A);
(Ⅲ)證明:對于任意給定的每項均為正整數(shù)的有窮數(shù)列A0,存在正整數(shù)K,當k≥K時,S(Ak+1)=S(Ak).

解:(Ⅰ)解:A0:5,3,2,T1(A0):3,4,2,1,A1=T2(T1(A0)):4,3,2,1;T1(A1):4,3,2,1,0,A2=T2(T1(A1)):4,3,2,1.
(Ⅱ)證明:設(shè)每項均是正整數(shù)的有窮數(shù)列A為a1,a2,,an,
則T1(A)為n,a1-1,a2-1,,an-1,
從而S(T1(A))=2[n+2(a1-1)+3(a2-1)++(n+1)(an-1)]+n2+(a1-1)2+(a2-1)2++(an-1)2
又S(A)=2(a1+2a2++nan)+a12+a22++an2
所以S(T1(A))-S(A)=2[n-2-3--(n+1)]+2(a1+a2++an)+n2-2(a1+a2++an)+n=-n(n+1)+n2+n=0,
故S(T1(A))=S(A).
(Ⅲ)證明:設(shè)A是每項均為非負整數(shù)的數(shù)列a1,a2,,an
當存在1≤i<j≤n,使得ai≤aj時,交換數(shù)列A的第i項與第j項得到數(shù)列B,
則S(B)-S(A)=2(iaj+jai-iai-jaj)=2(i-j)(aj-ai)≤0.
當存在1≤m<n,使得am+1=am+2═an=0時,若記數(shù)列a1,a2,,am為C,
則S(C)=S(A).
所以S(T2(A))≤S(A).
從而對于任意給定的數(shù)列A0,由Ak+1=T2(T1(Ak))(k=0,1,2,)
可知S(Ak+1)≤S(T1(Ak)).
又由(Ⅱ)可知S(T1(Ak))=S(Ak),所以S(Ak+1)≤S(Ak).
即對于k∈N,要么有S(Ak+1)=S(Ak),要么有S(Ak+1)≤S(Ak)-1.
因為S(Ak)是大于2的整數(shù),所以經(jīng)過有限步后,必有S(Ak)=S(Ak+1)=S(Ak+2)=0.
即存在正整數(shù)K,當k≥K時,S(Ak+1)=S(A)
分析:(Ⅰ)由A0:5,3,2,求得T1(A0)再通過Ak+1=T2(T1(Ak))求解.
(Ⅱ)設(shè)有窮數(shù)列A求得T1(A)再求得S(T1(A)),由S(A)=2(a1+2a2++nan)+a12+a22++an2,兩者作差比較.
(Ⅲ)設(shè)A是每項均為非負整數(shù)的數(shù)列a1,a2,,an.在存在1≤i<j≤n,有ai≤aj時條件下,交換數(shù)列A的第i項與第j項得到數(shù)列B,在存在1≤m<n,使得am+1=am+2═an=0時條件下,若記數(shù)列a1,a2,…,am為C,Ak+1=T2(T1(Ak))s(Ak+1)≤S(T1(Ak)).由S(T1(Ak))=S(Ak),得到S(Ak+1)≤S(Ak).S(Ak)是大于2的整數(shù),所以經(jīng)過有限步后,必有S(Ak)=S(Ak+1)=S(Ak+2)=0.
點評:本題是一道由一個數(shù)列為基礎(chǔ),按著某種規(guī)律新生出另一個數(shù)列的題目,要注意新數(shù)列的前幾項一定不能出錯,一出旦錯,則整體出錯.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

21、對于每項均是正整數(shù)的數(shù)列A:a1,a2,…,an,定義變換T1,T1將數(shù)列A變換成數(shù)列T1(A):n,a1-1,a2-1,…,an-1.
對于每項均是非負整數(shù)的數(shù)列B:b1,b2,…,bm,定義變換T2,T2將數(shù)列B各項從大到小排列,然后去掉所有為零的項,得到數(shù)列T2(B);
又定義S(B)=2(b1+2b2+…+mbm)+b12+b22+…+bm2.設(shè)A0是每項均為正整數(shù)的有窮數(shù)列,令A(yù)k+1=T2(T1(Ak))(k=0,1,2,…).
(Ⅰ)如果數(shù)列A0為5,3,2,寫出數(shù)列A1,A2
(Ⅱ)對于每項均是正整數(shù)的有窮數(shù)列A,證明S(T1(A))=S(A);
(Ⅲ)證明:對于任意給定的每項均為正整數(shù)的有窮數(shù)列A0,存在正整數(shù)K,當k≥K時,S(Ak+1)=S(Ak).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•崇明縣二模)對于每項均是正整數(shù)的數(shù)列A:a1,a2,…,an,定義變換T1,T1將數(shù)列A變換成數(shù)列T1(A):n,a1-1,a2-1,…,an-1;對于每項均是非負整數(shù)的數(shù)列B:b1,b2,…,bm,定義變換T2,T2將數(shù)列B各項從大到小排列,然后去掉所有為零的項,得到數(shù)列T2(B);設(shè)A0是每項均為正整數(shù)的有窮數(shù)列,令A(yù)k+1=T2(T1(Ak))(k=0,1,2,…).如果數(shù)列A0為4,2,1,則數(shù)列A1
A2為3,3,1
A2為3,3,1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

20.(本小題共13分)

對于每項均是正整數(shù)的數(shù)列,定義變換,將數(shù)列變換成數(shù)列

對于每項均是非負整數(shù)的數(shù)列,定義變換將數(shù)列各項從大到小排列,然后去掉所有為零的項,得到數(shù)列

又定義

設(shè)是每項均為正整數(shù)的有窮數(shù)列,令

(Ⅰ)如果數(shù)列為5,3,2,寫出數(shù)列;

(Ⅱ)對于每項均是正整數(shù)的有窮數(shù)列,證明;

(Ⅲ)證明對于任意給定的每項均為正整數(shù)的有窮數(shù)列,存在正整數(shù),當時,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于每項均是正整數(shù)的數(shù)列A:a1,a2,…,an,定義變換T1,T1將數(shù)列A變換成數(shù)列T1A.:n,a1-1,a2-1,…,an-1.

對于每項均是非負整數(shù)的數(shù)列B:b1,b2, …,bm,定義變換T2T2將數(shù)列B各項從大到小排列,然后去掉所有為零的項,得到數(shù)列T2B):又定義

SB)=2(b1+2b2+…+mbm)+b21+b22+…+b2m

設(shè)A0是每項均為正整數(shù)的有窮數(shù)列,令Ak+1=T2(T1(Ak))(k=0,1,2, …)

(Ⅰ)如果數(shù)列A0為5,3,2,寫出數(shù)列A1,A2

(Ⅱ)對于每項均是正整數(shù)的有窮數(shù)列A,證明ST1A.)=SA.;

(Ⅲ)證明:對于任意給定的每項均為正整數(shù)的有窮數(shù)列A0,存在正整數(shù)K,當k≥K時,S(Ak+1)=S(Ak).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009年上海市崇明縣高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

對于每項均是正整數(shù)的數(shù)列A:a1,a2,…,an,定義變換T1,T1將數(shù)列A變換成數(shù)列T1(A):n,a1-1,a2-1,…,an-1;對于每項均是非負整數(shù)的數(shù)列B:b1,b2,…,bm,定義變換T2,T2將數(shù)列B各項從大到小排列,然后去掉所有為零的項,得到數(shù)列T2(B);設(shè)A是每項均為正整數(shù)的有窮數(shù)列,令A(yù)k+1=T2(T1(Ak))(k=0,1,2,…).如果數(shù)列A為4,2,1,則數(shù)列A1   

查看答案和解析>>

同步練習冊答案