已知、為雙曲線C的左、右焦點,點P在C上,∠P=,則
A.2B.4C.6D.8
B
本試題主要考查雙曲線的定義,考查余弦定理的應用.由雙曲線的定義得①,又,由余弦定理②,由①2-②得,故選B.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知雙曲線1的右焦點是,右頂點是,虛軸的上端點是,,.
(1)求該雙曲線的方程;
(2)設是雙曲線上的一點,且過點、的直線軸交于點,若       求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)w.&
雙曲線,一焦點到其相應準線的距離為,過點A(0,-b),B(a,0)的直線與原點的距離為
(1)求該雙曲線的方程
(2)是否存在直線與雙曲線交于相異兩點C,D,使得C,D兩點都在以A為圓心的同一個圓上,若存在,求出直線方程;若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

雙曲線的離心率,是左,右焦點,過軸的垂線與雙曲線在第一象限交于P點,直線F1P與右準線交于Q點,已知
(1)求雙曲線的方程;
(2)設過的直線MN分別與左支,右支交于M、N ,線段MN的垂線平分線軸交于點,若<3,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

雙曲線一支上有不同三點,,與焦點的距離成等差數(shù)列,中垂線經(jīng)過定點的坐標

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設點P是雙曲線與圓在第一象限的交點F1,F(xiàn)2分別是雙曲線的左、右焦點,且,則雙曲線的離心率為            (   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

是雙曲線的右支上一動點,是雙曲線的右焦點,已知,則的最小值是          

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知以原點O為中心,為右焦點的雙曲線C的離心率。
(I)                   求雙曲線C的標準方程及其漸近線方程;
(II)                如題(20)圖,已知過點的直線與過點(其中)的直線的交點E在雙曲線C上,直線MN與兩條漸近線分別交與G、H兩點,求的面積。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

A、B為雙曲線=1同一條漸近線上的兩個不同的點,若|AB|=6,在向量=(1,0)上的投影為3,則雙曲線的離心率e等于                     (   )
A.2B.C.2或D.2或

查看答案和解析>>

同步練習冊答案