設(shè)復(fù)數(shù)a=
1+
3
i
2
,b=
1-
3
i
2
(其中i為虛數(shù)單位)
(1)求a2、a3、b2、b3的值;
(2)當(dāng)n∈N*時(shí),計(jì)算an+bn
考點(diǎn):復(fù)數(shù)代數(shù)形式的混合運(yùn)算
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:(1)利用復(fù)數(shù)代數(shù)形式的運(yùn)算法則或三角形式的運(yùn)算法則即可得出;
(2)利用“棣莫弗定理”即可得出.
解答: 解:(1)∵復(fù)數(shù)a=
1+
3
i
2
,b=
1-
3
i
2

a=cos
π
3
+isin
π
3
,b=cos(-
π
3
)+isin(-
π
3
)=
.
a
,
a2=cos
3
+isin
3
=-
1
2
+
3
2
i
,b2=cos(-
3
)+isin(-
3
)
=-
1
2
-
3
2
i

a3=cosπ+isinπ=-1,b3=cos(-π)+isin(-π)=-1.
(2)由(1)可知:an+bn=(cos
π
3
+isin
π
3
)n
+[cos(-
π
3
)+isin(-
π
3
)]n

=2cos
3
+i[sin
3
+sin(-
3
)]

=2cos
3
點(diǎn)評(píng):本題考查了復(fù)數(shù)代數(shù)形式的運(yùn)算法則或“棣莫弗定理”,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)點(diǎn)A(-a,0),B(a,b)的直線與橢圓
x2
a2
+
y2
b2
=1交于點(diǎn)C,則|AC|:|BC|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若實(shí)數(shù)a,b,c滿足a2+b2+c2=8,則a+b+c的最大值為( 。
A、9
B、2
3
C、3
2
D、2
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列四個(gè)命題,其中假命題是( 。
A、從勻速傳遞的新產(chǎn)品生產(chǎn)流水線上,質(zhì)檢員每10分鐘從中抽取一件新產(chǎn)品進(jìn)行某項(xiàng)指標(biāo)檢測(cè),這樣的抽樣是分層抽樣
B、樣本方差反映了樣本數(shù)據(jù)與樣本平均值的偏離程度
C、在回歸分析模型中,殘差平方和越小,說(shuō)明模型的擬合效果越好
D、設(shè)隨機(jī)變量X服從正態(tài)分布N(0,1),若P(x>1)=p,則P(-1<x<0)=
1
2
-p.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x||x+1|<1},B={x|(
1
2
x-2≥0},則A∩∁RB=( 。
A、(-2,-1)
B、(-2,-1]
C、(-1,0)
D、[-1,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四棱錐P-ABCD中,ABCD為菱形,PA⊥平面ABCD,∠BCD=60°,BC=1,E為CD的中點(diǎn),PC與平面ABCD成角60°
(1)求證:平面EPB⊥平面PBA;
(2)求二面角B-PD-A的平面角正切值的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)y=tan2x+tanx-1(|x|≤
π
4
)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,海監(jiān)船位于島嶼A的南偏西60°方向且與島嶼A相距12海里的B處,一艘不明身份的漁船從島嶼A出發(fā)沿正北方向以10海里/小時(shí)的速度航行.若海監(jiān)船同時(shí)從B處出發(fā),沿北偏東的方向以20海里/小時(shí)的速度盡快追趕漁船予以查處.則海監(jiān)船最少約用多長(zhǎng)時(shí)間能追上漁船?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)兩集合A、B,求證:當(dāng)且僅當(dāng)A⊆B時(shí),A∩B=A成立.

查看答案和解析>>

同步練習(xí)冊(cè)答案