【題目】已知函數(shù),若),,,則的取值范圍是( )

A. B. C. D.

【答案】D

【解析】

x2x14,將已知轉(zhuǎn)為fx2)+2mx2fx1)+2mx1恒成立,構(gòu)造函數(shù)gx)=fx)+2mx,由函數(shù)單調(diào)性定義可知函數(shù)gx)在[4,+∞)上的單調(diào)性,由單調(diào)性可求得a的取值范圍.

由已知不妨設x2x14,要恒成立,只需fx2)+2mx2fx1)+2mx1,gx)=fx)+2mx,gx2)>gx1),由函數(shù)單調(diào)性的定義可知gx)在[4,+∞)上單調(diào)遞增.又函數(shù)gx)=,g'(x)=2x++2m,

g'(x)≥0在[4,+∞)恒成立,即x++m≥0在[4,+∞)恒成立,

變量分離得-mx+,令h(x)= x+,只需-m ,

又h(x)在[4,+∞)上單調(diào)遞增,則=h(4)=4+,所以-m4+,

由已知使-m4+成立,即,

,

故選:D.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示的幾何體中,四邊形為等腰梯形, , ,四邊形為正方形,平面平面.

(Ⅰ)若點是棱的中點,求證: ∥平面;

(Ⅱ)求直線與平面所成角的正弦值;

(Ⅲ)在線段上是否存在點,使平面平面?若存在,求的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某環(huán)線地鐵按內(nèi)、外環(huán)線同時運行,內(nèi)、外環(huán)線的長均為30千米(忽略內(nèi)、外環(huán)線長度差異).

(1)當9列列車同時在內(nèi)環(huán)線上運行時,要使內(nèi)環(huán)線乘客最長候車時間為10分鐘,求內(nèi)環(huán)線列車的最小平均速度;

(2)新調(diào)整的方案要求內(nèi)環(huán)線列車平均速度為25千米/小時,外環(huán)線列車平均速度為30千米/小時.現(xiàn)內(nèi)、外環(huán)線共有18列列車全部投入運行,要使內(nèi)外環(huán)線乘客的最長候車時間之差不超過1分鐘,向內(nèi)、外環(huán)線應各投入幾列列車運行?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】拋物線的焦點為,過點的直線交拋物線于,兩點.

(1)為坐標原點,求證:;

(2)設點在線段上運動,原點關(guān)于點的對稱點為,求四邊形面積的最小值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某同學用五點法畫函數(shù)在某一個周期內(nèi)的圖象時,列出了如表并給出了部分數(shù)據(jù):

0

π

x

0

2

0

0

1)請根據(jù)上表數(shù)據(jù),寫出函數(shù)的解析式;(直接寫出結(jié)果即可)

2)求函數(shù)的單調(diào)遞增區(qū)間;

3)設,已知函數(shù)在區(qū)間上的最大值是img src="http://thumb.zyjl.cn/questionBank/Upload/2020/11/26/20/139c9676/SYS202011262014544768390673_ST/SYS202011262014544768390673_ST.013.png" width="24" height="24" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />,求t的值以及函數(shù)在區(qū)間[上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題錯誤的是( )

A.兩個隨機變量的線性相關(guān)性越強,相關(guān)系數(shù)的絕對值越接近于1

B.,且,則

C.在殘差圖中,殘差點分布的帶狀區(qū)域的寬帶越狹窄,其模型擬合的精度越高

D.已知變量xy滿足關(guān)系,變量yz正相關(guān),則xz負相關(guān)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)的導數(shù)滿足fx)+xxR恒成立,且實數(shù)x,y滿足xfx)﹣yfy)>fy)﹣fx),則下列關(guān)系式恒成立的是( )

A.B.lnx2+1)>lny2+1

C.D.xysinxsiny

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)求上的最值;

(2)若,當有兩個極值點時,總有,求此時實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx=ax2+2x+c,若不等式fx<0的解集是{x|-4<x<2}.

1)求fx)的解析式;

2)判斷fx)在(0,+∞)上的單調(diào)性,并用定義證明;

3)若函數(shù)fx)在區(qū)間[m,m+2]上的最小值為-5,求實數(shù)m的值.

查看答案和解析>>

同步練習冊答案