【題目】已知函數(shù),若(),,,則的取值范圍是( )
A. B. C. D.
【答案】D
【解析】
設x2>x14,將已知轉(zhuǎn)為f(x2)+2mx2>f(x1)+2mx1恒成立,構(gòu)造函數(shù)g(x)=f(x)+2mx,由函數(shù)單調(diào)性定義可知函數(shù)g(x)在[4,+∞)上的單調(diào)性,由單調(diào)性可求得a的取值范圍.
由已知不妨設x2>x14,要恒成立,只需f(x2)+2mx2>f(x1)+2mx1,令g(x)=f(x)+2mx,即g(x2)>g(x1),由函數(shù)單調(diào)性的定義可知g(x)在[4,+∞)上單調(diào)遞增.又函數(shù)g(x)=,g'(x)=2x++2m,
即g'(x)≥0在[4,+∞)恒成立,即x++m≥0在[4,+∞)恒成立,
變量分離得-mx+,令h(x)= x+,只需-m ,
又h(x)在[4,+∞)上單調(diào)遞增,則=h(4)=4+,所以-m4+,
由已知使-m4+成立,即,
即,
故選:D.
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示的幾何體中,四邊形為等腰梯形, ∥, , ,四邊形為正方形,平面平面.
(Ⅰ)若點是棱的中點,求證: ∥平面;
(Ⅱ)求直線與平面所成角的正弦值;
(Ⅲ)在線段上是否存在點,使平面平面?若存在,求的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某環(huán)線地鐵按內(nèi)、外環(huán)線同時運行,內(nèi)、外環(huán)線的長均為30千米(忽略內(nèi)、外環(huán)線長度差異).
(1)當9列列車同時在內(nèi)環(huán)線上運行時,要使內(nèi)環(huán)線乘客最長候車時間為10分鐘,求內(nèi)環(huán)線列車的最小平均速度;
(2)新調(diào)整的方案要求內(nèi)環(huán)線列車平均速度為25千米/小時,外環(huán)線列車平均速度為30千米/小時.現(xiàn)內(nèi)、外環(huán)線共有18列列車全部投入運行,要使內(nèi)外環(huán)線乘客的最長候車時間之差不超過1分鐘,向內(nèi)、外環(huán)線應各投入幾列列車運行?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】拋物線的焦點為,過點的直線交拋物線于,兩點.
(1)為坐標原點,求證:;
(2)設點在線段上運動,原點關(guān)于點的對稱點為,求四邊形面積的最小值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某同學用“五點法”畫函數(shù)在某一個周期內(nèi)的圖象時,列出了如表并給出了部分數(shù)據(jù):
0 | π | ||||
x | |||||
0 | 2 | 0 | 0 |
(1)請根據(jù)上表數(shù)據(jù),寫出函數(shù)的解析式;(直接寫出結(jié)果即可)
(2)求函數(shù)的單調(diào)遞增區(qū)間;
(3)設,已知函數(shù)在區(qū)間上的最大值是img src="http://thumb.zyjl.cn/questionBank/Upload/2020/11/26/20/139c9676/SYS202011262014544768390673_ST/SYS202011262014544768390673_ST.013.png" width="24" height="24" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />,求t的值以及函數(shù)在區(qū)間[上的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列命題錯誤的是( )
A.兩個隨機變量的線性相關(guān)性越強,相關(guān)系數(shù)的絕對值越接近于1
B.設,且,則
C.在殘差圖中,殘差點分布的帶狀區(qū)域的寬帶越狹窄,其模型擬合的精度越高
D.已知變量x和y滿足關(guān)系,變量y與z正相關(guān),則x與z負相關(guān)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)的導數(shù)滿足f(x)+x>對x∈R恒成立,且實數(shù)x,y滿足xf(x)﹣yf(y)>f(y)﹣f(x),則下列關(guān)系式恒成立的是( )
A.B.ln(x2+1)>ln(y2+1)
C.D.x﹣y>sinx﹣siny
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ax2+2x+c,若不等式f(x)<0的解集是{x|-4<x<2}.
(1)求f(x)的解析式;
(2)判斷f(x)在(0,+∞)上的單調(diào)性,并用定義證明;
(3)若函數(shù)f(x)在區(qū)間[m,m+2]上的最小值為-5,求實數(shù)m的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com