【題目】
為了了解高中新生的體能情況,某學(xué)校抽取部分高一學(xué)生進(jìn)行一分鐘跳繩次數(shù)測試,將所得數(shù)據(jù)整理后,畫出頻率分布直方圖(如圖),圖中從 左到右各小長方形面積之比為2:4:17:15:9:3,第二小組頻數(shù)為12﹒
[來
(Ⅰ)第二小組的頻率是多少?樣本容量是多少?
(Ⅱ)若次數(shù)在110以上(含110次)為達(dá)標(biāo),試估計該學(xué)校全體高一學(xué)生的達(dá)標(biāo)率是多少?
(Ⅲ)在這次測試中,學(xué)生跳繩次數(shù)的中位數(shù)落在哪個小組內(nèi)?請說明理由.
【答案】(1)0.08,150;(2)88%;(3)第四小組,理由見解析
【解析】
試題(1)由頻率分布直方圖中各小矩形面積之和為1結(jié)合面積之比得到第二小組的頻率,從而求得樣本容量;(2)由頻率分布直方圖中各小矩形的面積和為1與面積之比可求出達(dá)標(biāo)的頻率即達(dá)標(biāo)率;(3)求出前四組的頻數(shù)即可得到中位數(shù)所在的區(qū)間.
試題解析:(1)由于頻率分布直方圖以面積的形式反映了數(shù)據(jù)落在各小組內(nèi)的頻率大小,因此第二小組的頻率為:又因為頻率=
所以
(2)由圖可估計該學(xué)校高一學(xué)生的達(dá)標(biāo)率約為
(3)由已知可得各小組的頻數(shù)依次為6,12,51,45,27,9,所以前三組的頻數(shù)之和為69,前四組的頻數(shù)之和為114,所以跳繩次數(shù)的中位數(shù)落在第四小組內(nèi).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知以坐標(biāo)原點為圓心的圓與拋物線相交于不同的兩點, ,與拋物線的準(zhǔn)線相交于不同的兩點, ,且.
(1)求拋物線的方程;
(2)若不經(jīng)過坐標(biāo)原點的直線與拋物線相交于不同的兩點, ,且滿足.證明直線過定點,并求出點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個大型噴水池的中央有一個強(qiáng)力噴水柱,為了測量噴水柱噴出的水柱的高度,某人在噴水柱正西方向的點A測得水柱頂端的仰角為45°,沿點A向北偏東30°前進(jìn)100 m到達(dá)點B,在B點測得水柱頂端的仰角為30°,則水柱的高度是( )
A. 50 mB. 100 m
C. 120 mD. 150 m
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中是假命題的是( )
A. ,函數(shù)都不是偶函數(shù)
B. ,
C. ,使
D. 若向量,則在方向上的投影為2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列結(jié)論正確的是( )
A.存在每個面都是直角三角形的四面體
B.每個面都是三角形的幾何體是三棱錐
C.圓臺上、下底面圓周上各取一點的連線是母線
D.用一個平面截圓錐,截面與底面間的部分是圓臺
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的圖像在處的切線方程與的單調(diào)區(qū)間;
(2)設(shè)是函數(shù)的導(dǎo)函數(shù),試比較與的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正四棱柱的底面邊長為2,側(cè)棱為上底面上的動點,給出下列四個結(jié)論:
①若PD=3,則滿足條件的P點有且只有一個;
②若,則點P的軌跡是一段圓弧;
③若PD∥平面,則DP長的最小值為2;
④若PD∥平面,且,則平面BDP截正四棱柱的外接球所得圖形的面積為.
其中所有正確結(jié)論的序號為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有3名男生、4名女生,在下列不同條件下,求不同的排列方法總數(shù).
(1)選5人排成一排;
(2)排成前后兩排,前排4人,后排3人;
(3)全體排成一排,甲不站排頭也不站排尾;
(4)全體排成一排,女生必須站在一起;
(5)全體排成一排,男生互不相鄰.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位擬建一個扇環(huán)面形狀的花壇(如圖所示),該扇環(huán)面是由以點為圓心的兩個同心圓弧和延長后通過點的兩條直線段圍成.按設(shè)計要求扇環(huán)面的周長為30米,其中大圓弧所在圓的半徑為10米.設(shè)小圓弧所在圓的半徑為米,圓心角為(弧度).
(1)求關(guān)于的函數(shù)關(guān)系式;
(2)已知在花壇的邊緣(實線部分)進(jìn)行裝飾時,直線部分的裝飾費(fèi)用為4元/米,弧線部分的裝飾費(fèi)用為9元/米.設(shè)花壇的面積與裝飾總費(fèi)用的比為,求關(guān)于的函數(shù)關(guān)系式,并求出為何值時, 取得最大值?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com