若復(fù)數(shù)z的共軛復(fù)數(shù)為
.
z
,且滿足
.
z
(2-i)=10+5i(i為虛數(shù)單位),則|z|=( 。
A、25
B、10
C、5
D、
5
考點(diǎn):復(fù)數(shù)求模
專(zhuān)題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:利用復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義、模的計(jì)算公式即可得出.
解答: 解:∵滿足
.
z
(2-i)=10+5i(i為虛數(shù)單位),
.
z
=
5(2+i)
2-i
=
5(2+i)2
(2-i)(2+i)
=
5(4-1+4i)
22+12
=
5×(3+4i)
5
=3+4i,
∴z=3-4i.
則|z|=
32+(-4)2
=5.
故選:C.
點(diǎn)評(píng):本題考查了復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義、模的計(jì)算公式,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的首項(xiàng)a1=1,以后各項(xiàng)由公式an=
an-1
an-1+1
(n>1,n∈N*)給出,寫(xiě)出這個(gè)數(shù)列的前5項(xiàng),并求該數(shù)列的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P(x,y,z)的坐標(biāo)滿足x2+y2+z2=4,且點(diǎn)A的坐標(biāo)為(2,3,2
3
),則|PA|的最小值為( 。
A、5B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

lim
n→∞
n+1
-
n
n+2
-
n+1
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知角α的終邊上有一點(diǎn)P的坐標(biāo)是(3a,4a),其中a≠0,求sinα,cosα,tanα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將同一張紙片折10次后的厚度為m,與折20次后的厚度n對(duì)比,小明說(shuō)“n=2m”,小剛說(shuō)“n=4m”,小麗說(shuō)“n=210m”,你認(rèn)為誰(shuí)的說(shuō)法對(duì)呢?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

利用指數(shù)定義及運(yùn)算法則計(jì)算:
(1)3-2=
 
;
(2)
52
=
 
;
(3)(
3
7
2=
 

(4)
49
=
 
;
(5)
3-27
=
 
;
(6)10000 
1
4
=
 

(7)4 -
1
2
=
 
;
(8)(6
1
4
 
1
2
=
 

(9)
3
33
63
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系取相同的長(zhǎng)度單位,曲線C1的參數(shù)方程為
x=-2+t
y=at
(t
為參數(shù)),曲線C2的極坐標(biāo)方程為ρ=4cosθ,若C1與C2有兩個(gè)不同的交點(diǎn),則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

當(dāng)0<x<
π
2
時(shí),求證:x-sinx<
1
6
x3

查看答案和解析>>

同步練習(xí)冊(cè)答案