【題目】已知函數(shù)

(1)當(dāng)時(shí),討論函數(shù)的單調(diào)性

(2)當(dāng)時(shí),,對(duì)任意,都有恒成立,求實(shí)數(shù)b的取值范圍.

【答案】(1)單調(diào)遞增,在單調(diào)遞減;(2)

【解析】

1)先求得定義域及函數(shù)的導(dǎo)函數(shù),求得函數(shù)極值點(diǎn).再由,可判斷導(dǎo)函數(shù)的符號(hào),即可判斷函數(shù)的單調(diào)區(qū)間.

2)將代入,再代入可得解析式.由不等式恒成立,分離參數(shù)后構(gòu)造函數(shù).求其導(dǎo)函數(shù)可得.再構(gòu)造函數(shù),求得.可判斷出有唯一的零點(diǎn),即處取得最小值.進(jìn)而結(jié)合不等式即可求得b的取值范圍.

1)定義域?yàn)?/span>

由題知

,

解得

當(dāng),,

當(dāng),﹔當(dāng),;

函數(shù)單調(diào)遞增,在單調(diào)遞減

2)將代入,再代入中可得

恒成立可得恒成立,

恒成立,

設(shè),則,

,,

當(dāng)時(shí),,

上單調(diào)遞增,且有,,

函數(shù)有唯一的零點(diǎn),且 ,

當(dāng),,,單調(diào)遞減,

當(dāng),,,單調(diào)遞增,

在定義域內(nèi)的最小值

,

,,(*)

,,

方程(*)等價(jià)為,,單調(diào)遞增,

等價(jià)為,,

,,易知單調(diào)遞增,,

的唯一零點(diǎn),

,,

的最小值,

恒成立

的范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為弘揚(yáng)中華民族優(yōu)秀傳統(tǒng)文化,樹(shù)立正確的價(jià)值導(dǎo)向,落實(shí)立德樹(shù)人根本任務(wù),某市組織30000名高中學(xué)生進(jìn)行古典詩(shī)詞知識(shí)測(cè)試,根據(jù)男女學(xué)生人數(shù)比例,使用分層抽樣的方法從中隨機(jī)抽取100名學(xué)生,記錄他們的分?jǐn)?shù),整理所得頻率分布直方圖如圖:

)規(guī)定成績(jī)不低于60分為及格,不低于85分為優(yōu)秀,試估計(jì)此次測(cè)試的及格率及優(yōu)秀率;

)試估計(jì)此次測(cè)試學(xué)生成績(jī)的中位數(shù);

)已知樣本中有的男生分?jǐn)?shù)不低于80分,且樣本中分?jǐn)?shù)不低于80分的男女生人數(shù)相等,試估計(jì)參加本次測(cè)試30000名高中生中男生和女生的人數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方體中,是棱的中點(diǎn),是側(cè)面內(nèi)的動(dòng)點(diǎn),且平面,則與平面所成角的正切值構(gòu)成的集合是(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的焦點(diǎn)在x軸上,一個(gè)頂點(diǎn)為,離心率為,過(guò)橢圓的右焦點(diǎn)F的直線l與坐標(biāo)軸不垂直,且交橢圓于AB兩點(diǎn).

求橢圓的方程;

設(shè)點(diǎn)C是點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn),在x軸上是否存在一個(gè)定點(diǎn)N,使得C,B,N三點(diǎn)共線?若存在,求出定點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由;

設(shè),是線段為坐標(biāo)原點(diǎn)上的一個(gè)動(dòng)點(diǎn),且,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(選修4-4:坐標(biāo)系與參數(shù)方程)

已知圓的參數(shù)方程為,為參數(shù)),將圓上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的倍,縱坐標(biāo)不變得到曲線;以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

1)求曲線的普通方程與曲線的直角坐標(biāo)方程;

2)設(shè)為曲線上的動(dòng)點(diǎn),求點(diǎn)與曲線上點(diǎn)的距離的最小值,并求此時(shí)點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】20197月,中國(guó)良渚古城遺址獲準(zhǔn)列入世界遺產(chǎn)名錄,標(biāo)志著中華五千年文明史得到國(guó)際社會(huì)認(rèn)可.良渚古城遺址是人類早期城市文明的范例,實(shí)證了中華五千年文明史.考古科學(xué)家在測(cè)定遺址年齡的過(guò)程中利用了“放射性物質(zhì)因衰變而減少”這一規(guī)律.已知樣本中碳14的質(zhì)量N隨時(shí)間(單位:年)的衰變規(guī)律滿足(表示碳14原有的質(zhì)量),則經(jīng)過(guò)5730年后,碳14的質(zhì)量變?yōu)樵瓉?lái)的______;經(jīng)過(guò)測(cè)定,良渚古城遺址文物樣本中碳14的質(zhì)量是原來(lái)的,據(jù)此推測(cè)良渚古城存在的時(shí)期距今約在5730年到______年之間.(參考數(shù)據(jù):,,)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)半圓中有兩個(gè)互切的內(nèi)切半圓,由三個(gè)半圓弧圍成曲邊三角形,作兩個(gè)內(nèi)切半圓的公切線把曲邊三角形分隔成兩塊,阿基米德發(fā)現(xiàn)被分隔的這兩塊的內(nèi)切圓是同樣大小的,由于其形狀很像皮匠用來(lái)切割皮料的刀子,他稱此為“皮匠刀定理”,如圖,若,則陰影部分與最大半圓的面積比為(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的焦點(diǎn)為,的準(zhǔn)線,軸,軸,、交拋物線、兩點(diǎn),交、兩點(diǎn),已知的面積是2倍,則中點(diǎn)軸的距離的最小值為(

A.B.1C.D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)是定義在上的偶函數(shù),周期是4,當(dāng)時(shí),.則方程的根的個(gè)數(shù)為( )

A.3B.4C.5D.6

查看答案和解析>>

同步練習(xí)冊(cè)答案