已知數(shù)列{an}的通項(xiàng)公式是an=2n-49 (n∈N),那么數(shù)列{an}的前n項(xiàng)和Sn 達(dá)到最小值時(shí)的n的值是


  1. A.
    23
  2. B.
    24
  3. C.
    25
  4. D.
    26
B
分析:由an=2n-49≥0,得n≥24.5,a24=2×24-49=-1<0,a25=2×25-49=1>0,由此能求出數(shù)列{an}的前n項(xiàng)和Sn 達(dá)到最小值時(shí)n的值.
解答:由an=2n-49≥0,得n≥24.5,
∴a24=2×24-49=-1<0,
a25=2×25-49=1>0,
∴數(shù)列{an}的前n項(xiàng)和Sn 達(dá)到最小值時(shí)的n=24.
故選B.
點(diǎn)評(píng):本題考查數(shù)列的性質(zhì)和應(yīng)用,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意數(shù)列的函數(shù)性質(zhì)的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的通項(xiàng)為an=2n-1,Sn為數(shù)列{an}的前n項(xiàng)和,令bn=
1
Sn+n
,則數(shù)列{bn}的前n項(xiàng)和的取值范圍為( 。
A、[
1
2
,1)
B、(
1
2
,1)
C、[
1
2
,
3
4
)
D、[
2
3
,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的通項(xiàng)公式是an=
an
bn+1
,其中a、b均為正常數(shù),那么數(shù)列{an}的單調(diào)性為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2003•東城區(qū)二模)已知數(shù)列{an}的通項(xiàng)公式是 an=
na
(n+1)b
,其中a、b均為正常數(shù),那么 an與 an+1的大小關(guān)系是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的通項(xiàng)公式為an=2n-5,則|a1|+|a2|+…+|a10|=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的通項(xiàng)公式為an=
1
n+1
+
n
求它的前n項(xiàng)的和.

查看答案和解析>>

同步練習(xí)冊(cè)答案