6.圓(x-$\frac{3}{2}$)2+(y-1)2=$\frac{1}{4}$的圓心是$(\frac{3}{2},1)$,半徑是$\frac{1}{2}$.

分析 直接利用圓的標(biāo)準(zhǔn)方程寫出圓心與半徑即可.

解答 解:圓(x-$\frac{3}{2}$)2+(y-1)2=$\frac{1}{4}$的圓心是:$(\frac{3}{2},1)$,半徑是:$\frac{1}{2}$.
故答案為:$(\frac{3}{2},1)$;$\frac{1}{2}$.

點(diǎn)評(píng) 本題考查圓的標(biāo)準(zhǔn)方程的應(yīng)用,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)x=50.6,y=0.65,z=log0.65,則x,y,z的大小關(guān)系為( 。
A.y<z<xB.y<x<zC.z<x<yD.z<y<x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.不等式$\frac{3-4x}{1-2x}$≤1的解集為( 。
A.[1,+∞)B.($\frac{1}{2}$,1)C.[$\frac{1}{2}$,1]D.($\frac{1}{2}$,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)f(x)=x2-2x,g(x)=ax-2(a>0),若?x∈[-1,2],恒有(x)>g(x)成立,則a的取值范圍是0<a<2$\sqrt{2}$-2;若?x1∈[-1,2],?x2∈[-1,2],使得(x1)=g(x2),則實(shí)數(shù)a的取值范圍是a≥$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知:a>b>0,求證:aabb>(ab)${\;}^{\frac{a+b}{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=sin($\frac{π}{3}$+ωx)+cos(ωx-$\frac{π}{6}$)(ω>0),f(x)的最小正周期為π.
(1)求ω的值;
(2)求y=f(x)的單調(diào)遞增區(qū)間;
(3)若x∈[-$\frac{π}{3}$,$\frac{π}{6}$],求y=f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)y=sin($\frac{π}{3}$-2x).
(1)求函數(shù)的最小正周期;
(2)求函數(shù)的對(duì)稱中心;
(3)求函數(shù)在[-π,0]上的單調(diào)減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.函數(shù)y=cos(x+$\frac{π}{6}$),x∈[0,$\frac{π}{2}$].的值域是( 。
A.(-$\frac{\sqrt{3}}{2}$,$\frac{1}{2}$]B.[-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$]C.[$\frac{\sqrt{3}}{2}$,1]D.[$\frac{1}{2}$,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)i是虛數(shù)單位,則復(fù)數(shù)z=$\frac{5}{i(i+2)}$的虛部為( 。
A.-2B.2C.-1D.-2i

查看答案和解析>>

同步練習(xí)冊(cè)答案