在平面直角坐標系xOy中,已知圓C1:(x+3)2+(y-1)2=4和圓C2:(x-4)2+(y-5)2=4.

(1) 若直線l過點A(4,0),且被圓C1截得的弦長為2,求直線l的方程;

(2) 設P為平面上的點,滿足:存在過點P的無窮多對互相垂直的直線l1和l2,它們分別與圓C1和圓C2相交,且直線l1被圓C1截得的弦長與直線l2被圓C2截得的弦長相等,試求所有滿足條件的點P的坐標.


解:(1) 設直線l的方程為y=k(x-4),即kx-y-4k=0.由垂徑定理,得圓心C1到直線l的距離d==1,結合點到直線距離公式,得=1,化簡得24k2+7k=0,解得k=0或k=-.

所求直線l的方程為y=0或y=-(x-4),即y=0或7x+24y-28=0.

(2) 設點P坐標為(m,n),直線l1、l2的方程分別為y-n=k(x-m),y-n=-(x-m),即kx-y+n-km=0,-x-y+n+m=0.

因為直線l1被圓C1截得的弦長與直線l2被圓C2截得的弦長相等,兩圓半徑相等.由垂徑定理,得圓心C1到直線l1與圓心C2到直線l2的距離相等.故有,化簡得(2-m-n)k=m-n-3或(m-n+8)k=m+n-5.

因為關于k的方程有無窮多解,所以有

解得點P坐標為.


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:


已知a>0,函數(shù)f(x)=-2asin+2a+b,當x∈時,-5≤f(x)≤1.

(1) 求常數(shù)a、b的值;

(2) 設g(x)=f且lgg(x)>0,求g(x)的單調區(qū)間. 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:


 橢圓=1的兩焦點為F1、F2,一直線過F1交橢圓于P、Q,則△PQF2的周長為________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:


如圖,設E:=1(a>b>0)的焦點為F1與F2,且P∈E,∠F1PF2=2θ.求證:△PF1F2的面積S=b2tanθ.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:


 已知橢圓C:+y2=1的兩焦點為F1,F(xiàn)2,點P(x0,y0)滿足+y≤1,則PF1+PF2的取值范圍為________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:


 已知拋物線y2=2px(p≠0)上存在關于直線x+y=1對稱的相異兩點,則實數(shù)p的取值范圍為________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:


已知橢圓C:=1(a>b>0)的離心率e=,一條準線方程為x=

(1) 求橢圓C的方程;

(2) 設G、H為橢圓C上的兩個動點,O為坐標原點,且OG⊥OH.

① 當直線OG的傾斜角為60°時,求△GOH的面積;

② 是否存在以原點O為圓心的定圓,使得該定圓始終與直線GH相切?若存在,請求出該定圓方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:


 已知拋物線D的頂點是橢圓C:=1的中心,焦點與該橢圓的右焦點重合.

(1) 求拋物線D的方程;

(2) 過橢圓C右頂點A的直線l交拋物線D于M、N兩點.

① 若直線l的斜率為1,求MN的長;

② 是否存在垂直于x軸的直線m被以MA為直徑的圓E所截得的弦長為定值?如果存在,求出m的方程;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:


已知橢圓C:=1(a>b>0),點A、B分別是橢圓C的左頂點和上頂點,直線AB與圓G: (c是橢圓的半焦距)相離,P是直線AB上一動點,過點P作圓G的兩切線,切點分別為M、N.

(1) 若橢圓C經過兩點,求橢圓C的方程;

(2) 當c為定值時,求證:直線MN經過一定點E,并求的值(O是坐標原點);

(3) 若存在點P使得△PMN為正三角形,試求橢圓離心率的取值范圍.

查看答案和解析>>

同步練習冊答案