已知函數(shù),,.
(1)若,設(shè)函數(shù),求的極大值;
(2)設(shè)函數(shù),討論的單調(diào)性.
(1)極大值;(2)當(dāng)時(shí),的增區(qū)間為,
當(dāng)時(shí),的增區(qū)間為,減區(qū)間為.
解析試題分析:(1)函數(shù)求極值分三步:①對(duì)函數(shù)求導(dǎo);②令導(dǎo)函數(shù)為零求根,判斷根是否為極值點(diǎn);③求出極值;(2)先求導(dǎo)函數(shù),然后利用導(dǎo)數(shù)求單調(diào)性,在其中要注意對(duì)a的分類討論.
試題解析:(1)當(dāng)時(shí),,定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/5e/9/hfjxf1.png" style="vertical-align:middle;" />,
則. 2分
令 ,列表: 4分
當(dāng)時(shí),取得極大值. 7分1 + 0 — ↗ 極大值 ↘
(2),∴. 9分
若,,在上遞增; 11分
若,當(dāng)時(shí),,單調(diào)遞增;
當(dāng)時(shí),,單調(diào)遞減. 14分
∴當(dāng)時(shí),的增區(qū)間為,
當(dāng)時(shí),的增區(qū)間為,減區(qū)間為. 16分
考點(diǎn):(1`)導(dǎo)數(shù)求單調(diào)性與極值;(2)分類討論數(shù)學(xué)思想.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),.
(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(2)若在區(qū)間上是減函數(shù),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
定義在R上的函數(shù)同時(shí)滿足以下條件:
①在(0,1)上是減函數(shù),在(1,+∞)上是增函數(shù);
②是偶函數(shù);
③在x=0處的切線與直線y=x+2垂直.
(1)求函數(shù)的解析式;
(2)設(shè)g(x)=,若存在實(shí)數(shù)x∈[1,e],使g(x)<,求實(shí)數(shù)m的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),,
(1)若,求曲線在處的切線方程;
(2)若對(duì)任意的,都有恒成立,求的最小值;
(3)設(shè),,若,為曲線的兩個(gè)不同點(diǎn),滿足,且,使得曲線在處的切線與直線AB平行,求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=x2-(1+2a)x+aln x(a為常數(shù)).
(1)當(dāng)a=-1時(shí),求曲線y=f(x)在x=1處切線的方程;
(2)當(dāng)a>0時(shí),討論函數(shù)y=f(x)在區(qū)間(0,1)上的單調(diào)性,并寫出相應(yīng)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)f(x)=x3-x2+6x-a.
(1)對(duì)于任意實(shí)數(shù)x,f′(x)≥m恒成立,求m的最大值;
(2)若方程f(x)=0有且僅有一個(gè)實(shí)根,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=ln x+2x-6.
(1)證明:函數(shù)f(x)有且只有一個(gè)零點(diǎn);
(2)求該零點(diǎn)所在的一個(gè)區(qū)間,使這個(gè)區(qū)間的長(zhǎng)度不超過
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知f(x)=xln x,g(x)=x3+ax2-x+2.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求f(x)在區(qū)間[t,t+2](t>0)上的最小值;
(3)對(duì)一切的x∈(0,+∞),2f(x)<g′(x)+2恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù);
(Ⅰ)求證:函數(shù)在上單調(diào)遞增;
(Ⅱ)設(shè),若直線PQ∥x軸,求P,Q兩點(diǎn)間的最短距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com