【題目】已知圓經(jīng)過(guò)點(diǎn)與直線相切,圓心的軌跡為曲線,過(guò)點(diǎn)做直線與曲線交于不同兩點(diǎn),三角形的垂心為點(diǎn).

1)求曲線的方程;

2)求證:點(diǎn)在一條定直線上,并求出這條直線的方程.

【答案】1;(2)證明見解析.

【解析】

1)根據(jù)拋物線的定義,得到圓心表示以為焦點(diǎn),以為準(zhǔn)線的拋物線,即可求得圓心的軌跡方程;

2)設(shè),由三點(diǎn)共線,求得的值,再求得過(guò)點(diǎn)與直線垂直和點(diǎn)與直線垂直的直線方程,聯(lián)立方程組,求得,即可得到結(jié)論.

1)圓經(jīng)過(guò)點(diǎn)與直線相切,

則圓心滿足到點(diǎn)與到直線的距離相等,

根據(jù)拋物線的定義,可得圓心表示以為焦點(diǎn),以為準(zhǔn)線的拋物線,

其中,所以圓心的軌跡方程為.

2)設(shè),

三點(diǎn)共線,則,整理得,

過(guò)點(diǎn)與直線垂直的直線為,

同理過(guò)點(diǎn)與直線垂直的直線為,

兩條垂線聯(lián)立方程組 ,解得,

所以垂心在直線.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓的長(zhǎng)半軸為半徑的圓與直線相切.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)已知點(diǎn), 為動(dòng)直線與橢圓的兩個(gè)交點(diǎn),問(wèn):在軸上是否存在點(diǎn),使為定值?若存在,試求出點(diǎn)的坐標(biāo)和定值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】公元五世紀(jì),數(shù)學(xué)家祖沖之估計(jì)圓周率的值的范圍是:,為紀(jì)念數(shù)學(xué)家祖沖之在圓周率研究上的成就,某教師在講授概率內(nèi)容時(shí)要求學(xué)生從小數(shù)點(diǎn)后的6位數(shù)字14,15,9,2中隨機(jī)選取兩個(gè)數(shù)字做為小數(shù)點(diǎn)后的前兩位(整數(shù)部分3不變),那么得到的數(shù)字大于3.14的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為

1)求直線與曲線的普通方程;

2)若直線與曲線交于、兩點(diǎn),點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C 的左、右頂點(diǎn)分別為,,上、下頂點(diǎn)分別為,,四邊形的面積為,坐標(biāo)原點(diǎn)O到直線的距離為.

1)求橢圓C的方程;

2)若直線l與橢圓C相交于A,B兩點(diǎn),點(diǎn)P為橢圓C上異于A,B的一點(diǎn),四邊形為平行四邊形,探究:平行四邊形的面積是否為定值?若是,求出此定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正三棱柱中,E,F分別為AB,的中點(diǎn).

1)求證:平面ACF

2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)求曲線在點(diǎn)處的切線方程;

2)若時(shí),恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】噪聲污染已經(jīng)成為影響人們身體健康和生活質(zhì)量的嚴(yán)重問(wèn)題,為了了解聲音強(qiáng)度(單位:分貝)與聲音能量(單位:)之間的關(guān)系,將測(cè)量得到的聲音強(qiáng)度和聲音能量=1,2…,10)數(shù)據(jù)作了初步處理,得到如圖散點(diǎn)圖及一些統(tǒng)計(jì)量的值.

45.7

0.51

5.1

表中,

(1)根據(jù)散點(diǎn)圖判斷,哪一個(gè)適宜作為聲音強(qiáng)度關(guān)于聲音能量的回歸方程類型?(給出判斷即可,不必說(shuō)明理由)

(2)根據(jù)表中數(shù)據(jù),求聲音強(qiáng)度關(guān)于聲音能量的回歸方程;

(3)當(dāng)聲音強(qiáng)度大于60分貝時(shí)屬于噪音,會(huì)產(chǎn)生噪音污染,城市中某點(diǎn)共受到兩個(gè)聲源的影響,這兩個(gè)聲源的聲音能量分別是,且.己知點(diǎn)的聲音能量等于聲音能量之和.請(qǐng)根據(jù)(1)中的回歸方程,判斷點(diǎn)是否受到噪音污染的干擾,并說(shuō)明理由.

附:對(duì)于一組數(shù)據(jù).其回歸直線的斜率和截距的最小二乘估計(jì)分別為:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)有兩個(gè)零點(diǎn),,且則下列結(jié)論中不正確的是(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案