【題目】已知函數(shù)f(x)=loga(x+b)(其中a,b為常數(shù),且a>0,a≠1)的圖象經(jīng)過點A(﹣2,0),B(1,2).
(1)求f(x)的解析式;
(2)若函數(shù)g(x)=( 2x﹣( x﹣1,x∈[0,+∞),求g(x)的值域.

【答案】
(1)解:∵已知函數(shù)f(x)=loga(x+b)(其中a,b為常數(shù),且a>0,a≠1)的圖象經(jīng)過點A(﹣2,0),B(1,2)

∴f(﹣2)=0,f(1)=2

∴l(xiāng)oga(b﹣2)=0,loga(1+b)=2

∴a=2,b=3

∴f(x)=log2(x+3)


(2)解:∵

,則t∈(0,1]

∴函數(shù)g(x)在 上單調遞減,在上單調遞增.

時,g(x)有最小值 ,t=1時,g(x)有最大值﹣1

∴g(x)的值域為


【解析】此題(1)由帶入法求解函數(shù)解析式,(2)是指數(shù)函數(shù)與二次函數(shù)的復合,轉化成二次函數(shù)的最值問題,難度不大

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】橢圓與雙曲線有相同的焦點,,橢圓的一個短軸端點為,直線與雙曲線的一條漸近線平行,若橢圓于雙曲線的離心率分別為,,則的最小值為__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地區(qū)擬建立一個藝術博物館,采取競標的方式從多家建筑公司選取一家建筑公司,經(jīng)過層層篩選,甲、乙兩家建筑公司進入最后的招標.現(xiàn)從建筑設計院聘請專家設計了一個招標方案:兩家公司從個招標問題中隨機抽取個問題,已知這個招標問題中,甲公司可正確回答其中的道題目,而乙公司能正確回答毎道題目的概率均為,甲、乙兩家公司對每題的回答都是相互獨立,互不影響的.

(1)求甲、乙兩家公司共答對道題目的概率;

(2)請從期望和方差的角度分析,甲、乙兩家哪家公司競標成功的可能性更大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知四棱錐的底面為平行四邊形,且,, 分別為中點,過作平面分別與線段相交于點.

(Ⅰ)在圖中作出平面使面 (不要求證明);

(II)若,在(Ⅰ)的條件下求多面體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設f(x)=a﹣ ,x∈R,(其中a為常數(shù)).
(1)若f(x)為奇函數(shù),求a的值;
(2)若不等式f(x)+a>0恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某研究小組在電腦上進行人工降雨模擬實驗,準備用A、B、C三種人工降雨方式分別對甲、乙、丙三地實施人工降雨,其實驗統(tǒng)計結果如下

方式

實施地點

大雨

中雨

小雨

模擬實驗次數(shù)

A

2次

6次

4次

12次

B

3次

6次

3次

12次

C

2次

2次

8次

12次

假定對甲、乙、丙三地實施的人工降雨彼此互不影響,且不考慮洪澇災害,請根據(jù)統(tǒng)計數(shù)據(jù):

1)求甲、乙、丙三地都恰為中雨的概率;

2考慮不同地區(qū)的干旱程度,當雨量達到理想狀態(tài)時,能緩解旱情,若甲、丙地需中雨或大雨即達到理想狀態(tài),乙地必須是大雨才達到理想狀態(tài),記甲、乙、丙三地中緩解旱情的個數(shù)為隨機變量,求的分布列和數(shù)學期望

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題 ,命題

(1)若命題為真命題,求實數(shù)的取值范圍;

(2)若命題為真命題,求實數(shù)的取值范圍;

(3)若命題“”為真命題,且命題“”為假命題,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《九章算術》中有這樣一則問題:“今有良馬與弩馬發(fā)長安,至齊,齊去長安三千里,良馬初日行一百九十三里,日增一十三里;弩馬初日行九十七里,日減半里,良馬先至齊,復還迎弩馬.”則現(xiàn)有如下說法:

①弩馬第九日走了九十三里路;

②良馬前五日共走了一千零九十五里路;

③良馬和弩馬相遇時,良馬走了二十一日.

則以上說法錯誤的個數(shù)是( )個

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)f(x)=x2+2bx+c(b,c∈R).
(1)若函數(shù)y=f(x)的零點為﹣1和1,求實數(shù)b,c的值;
(2)若f(x)滿足f(1)=0,且關于x的方程f(x)+x+b=0的兩個實數(shù)根分別在區(qū)間(﹣3,﹣2),(0,1)內,求實數(shù)b的取值范圍.

查看答案和解析>>

同步練習冊答案